

Die neue DAfStb-Richtlinie

Treibhausgas-reduzierte Tragwerke aus Beton, Stahlbeton oder Spannbeton

Univ.-Prof. Dr.-Ing. Michael Haist, Dr.-Ing. Tobias Schack (Leibniz Universität Hannover) Univ.-Prof. Dr.-Ing. Christian Glock, Michael Heckmann, M. Sc. (RPTU Kaiserslautern) Prof. Dr.-Ing. Udo Wiens (DAfStb)

Betonproduktion ...

6,7 % CO2-Emissionen infolge dafstb Stahlherstellung (Welt)

ist verantwortlich für ca. 8-10 % der globalen CO₂ Emissionen primär resultierend aus der Zementproduktion

□ trägt zu ca. ~ 40 %* zum Verbrauch mineralischer Ressourcen bei

ist verantwortlich für ca. 1,7 % des globalen Süßwasserverbrauchs

Betonproduktion verantwortlich für

~ 10 %

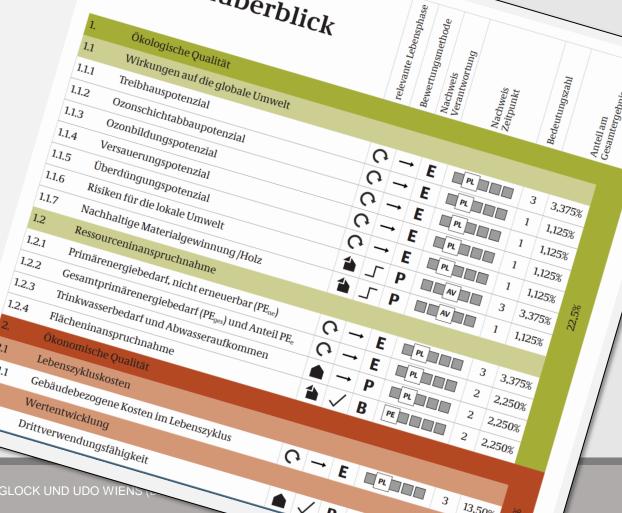
40 %

Weltweite CO₂-**Emissionen**

Mineralischer Ressourcenverbrauch

Herausforde

CO₂-Emissionsziele zur


0,8

0,6

0,4

Klimaverträglichkeit (des Tragwerks) in andel (-vermeidung) Nachhaltigkeitszertifizierungssystemen unterrepräsentiert (vgl. z.B. QNG)

- aquivalente CO₂-Emissionen = Kriterienüberblick Globale Erderwärmung اعل GWP)

2030

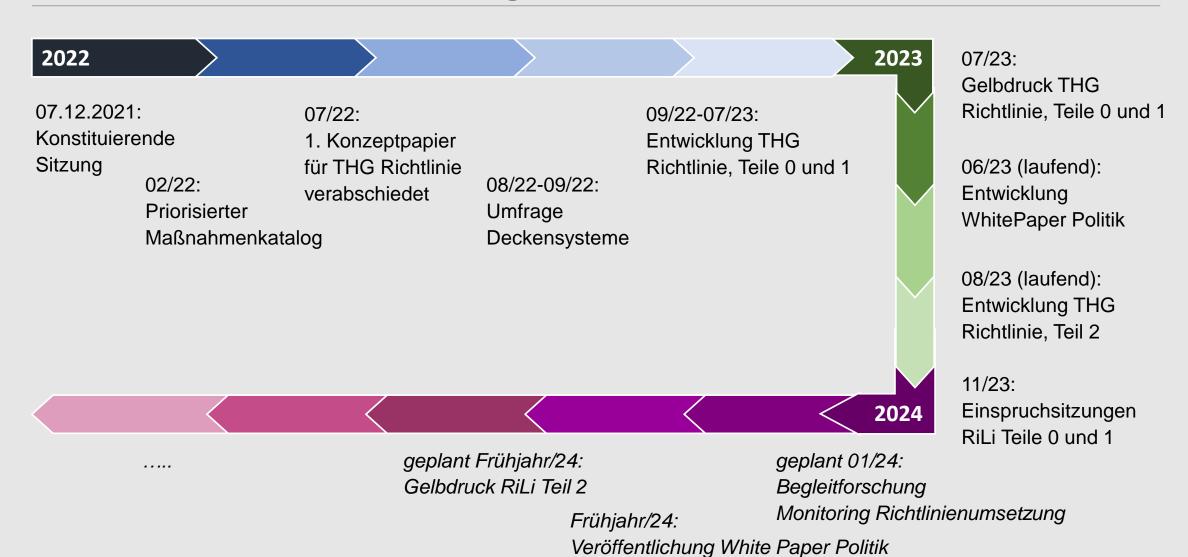
Jahr [-]

DAfSTb TA Nachhaltig Bauen mit Beton

Mitglieder

- Haist (LUH; Obmann)
- Glock (RPTU, Stellv. Obmann)
- Wiens (DAfStb)
- Aßbrock (BTB)
- Becke (FDB)
- Breitenbücher (TA Betontechnik)
- Breitschaft (DIBt)
- Buddenbohm (ZDB)
- Eckfeld (DIBt)
- Glöckner (VCI)
- Gloßmann (DIBt)
- Heckmann (RPTU)
- Schack (LUH)

- Hegger (TA Bemessung)
- Hierlein (FDB)
- Junge (TA Bewehrung)
- Laux (UM BW)
- Marzahn (BMVi)
- Meyer (DBV)
- Müller (VDZ)
- Omercic (DAfStb)
- Raupach (TA Instandsetzung)
- Schadow (WTM)
- Spanka
- Urban (DBV)
- Westendarp (BAW)


Ziele

- Umsetzung der Vorgaben des Klimaschutzgesetzes für den Betonbau
- Übergang hin zu einem klimaverträglichen und ressourceneffizienten Betonbau aktiv gestalten!
- Technologieoffenheit durch gezielte Ausgestaltung des Nachweises sicherstellen!
- Anreizsystem und regulatorischen Rahmen für klimaverträgliche und ressourceneffiziente Lösungen schaffen → Klimaverträglich Bauen ist ein Mehraufwand der bezahlt werden muss!

Klimaschutz in der Schnittstelle zwischen Baustoff und Tragwerk!

DAfStb TA Nachhaltig Bauen mit Beton

Nachweis der Klimaverträglichkeit

Minimieren

Umweltwirkungen z.B. CO2-Emissionen infolge Herstellung des Tragwerks Ökobilanz

Design-Ziel

Klimawirkung ~

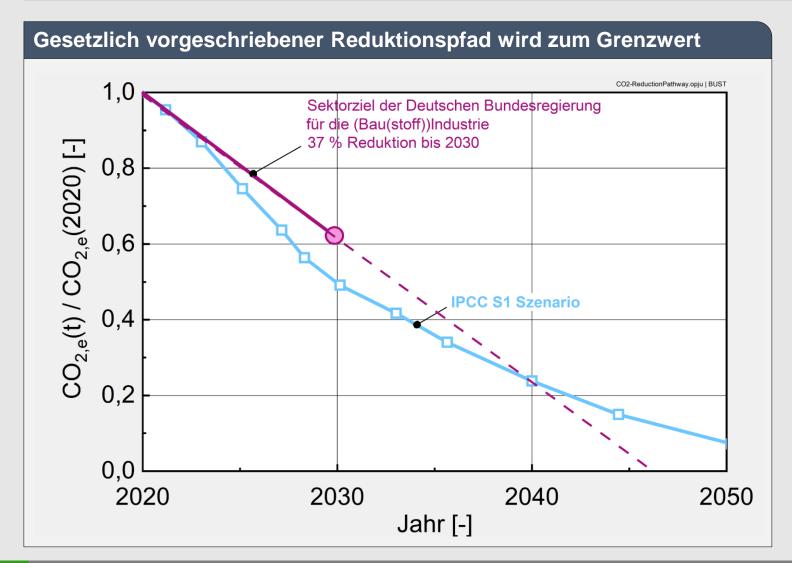
Wie können solche Grundüberlegungen in ein normatives Konzept überführt werden?

Maximieren

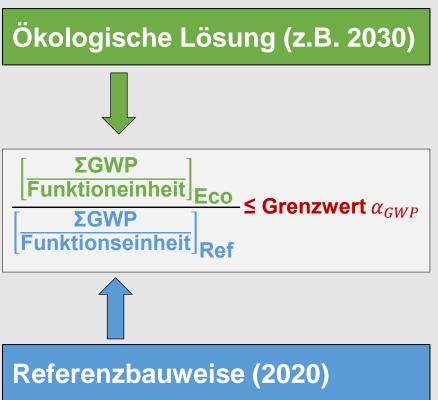
Leistungsfäl bzw. Funkt z.B. m² Ges mit bestimm ULS + SLS Leistungsparamern

(CLS)

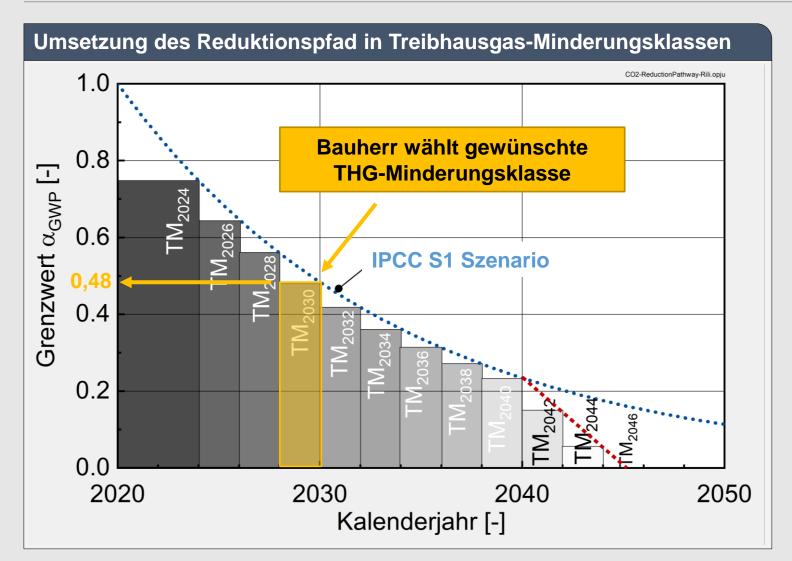
Nähere Informationen:


Haist, Bergmeister, Curbach, Forman, Gaganelis, Gerlach, Mark, Moffatt, Müller, Müller, Reiners, Scope, Tietze, Voit: Nachhaltig konstruieren und bauen mit Beton. Betonkalender 2022,

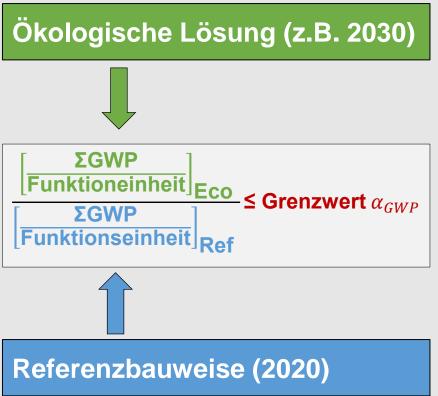
112 Seiten


Nebenbedingungen

Grundstruktur der Richtlinie (Teil 0)



CO_{2,e} = äquivalente CO₂-Emissionen = Maßzahl für die Globale Erderwärmung (Global Warming Potential, GWP)

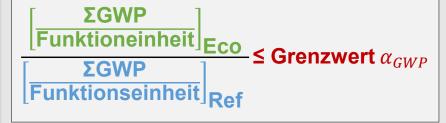


Grundstruktur der Richtlinie (Teil 0)

CO_{2,e} = äquivalente CO₂-Emissionen = Maßzahl für die Globale Erderwärmung (**Global Warming Potential, GWP**)

Normative Umsetzung Grenzwert α_{GWP}

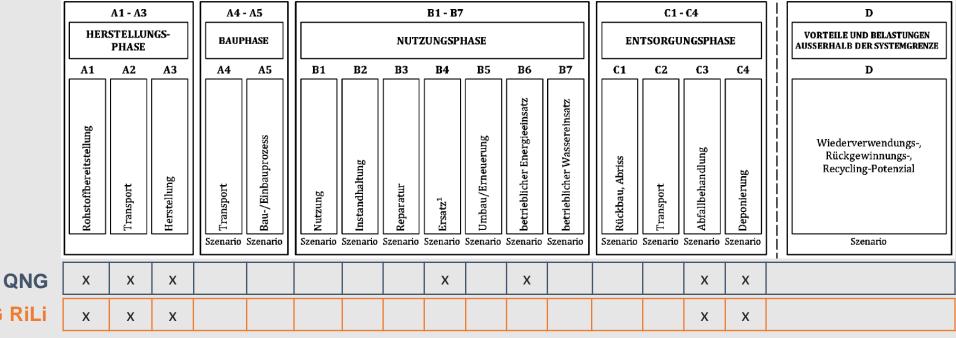
S	1	2	3	
	Treibhausgas-Minde-	Gültigkeitszeitraum bis einschließ-	COMP ([]	
Z	rungsklasse <i>TM</i> t	lich zum Kalenderjahr	αGWP,t [-]	
1	<i>TM</i> ₂₀₂₀	2020 ¹⁾	1,00	
2	<i>TM</i> ₂₀₂₄	2024	0,75	
3	<i>TM</i> ₂₀₂₆	2026	0,65	
4	<i>TM</i> ₂₀₂₈	2028	0,56	
5	<i>TM</i> ₂₀₃₀	2030	0,48	
6	<i>TM</i> ₂₀₃₂	2032	0,42	
7	<i>TM</i> ₂₀₃₄	2034	0,36	
8	<i>TM</i> ₂₀₃₆	2036	0,31	
9	<i>TM</i> ₂₀₃₈	2038	0,27	
10	<i>TM</i> ₂₀₄₀	2040	0,23 ²⁾	
11	<i>TM</i> ₂₀₄₂	2042	0,14 ²⁾	
12	<i>TM</i> ₂₀₄₄	2044	0,05 ²⁾	
13	<i>TM</i> ₂₀₄₆	2046	0,00 ²⁾	


¹⁾ Referenzjahr

- Verschärfung der Treibhausgareduktion im Zweijahres-Rythmus
- Wesentlich für die Festlegung der einzuhaltenden TM-Klasse ist Zeitpunkt der Bauantragstellung

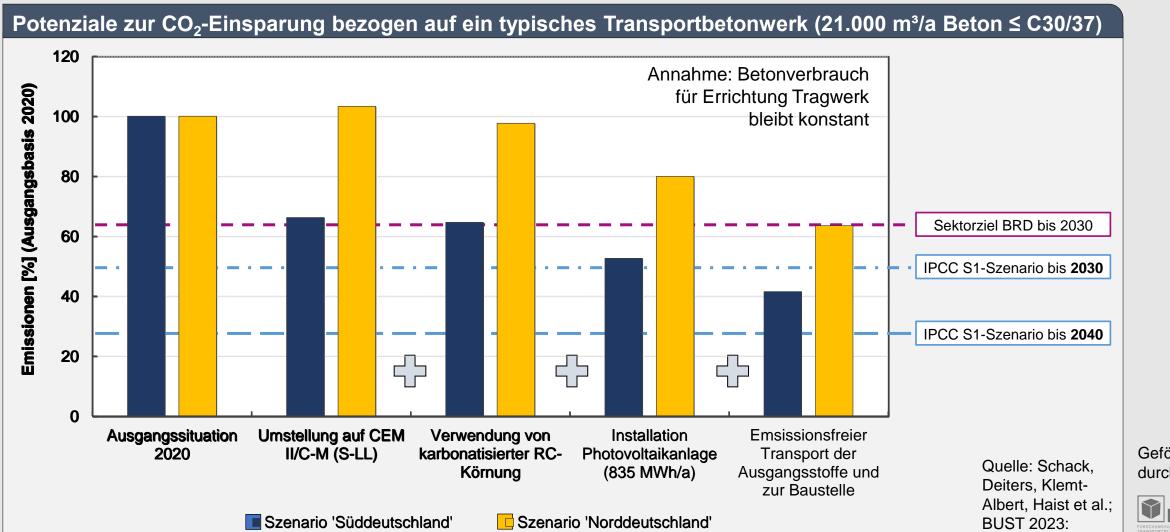
CO_{2,e} = äquivalente CO₂-Emissionen = Maßzahl für die Globale Erderwärmung (**Global Warming Potential, GWP**)

Ökologische Lösung (z.B. 2030)


Referenzbauweise (2020)

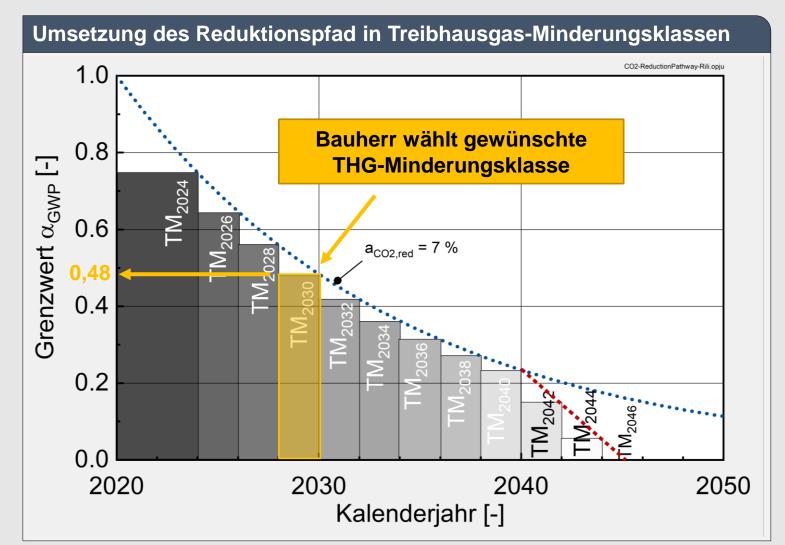
²⁾ ab 2040 linear abgemindert nach Vorgaben aus dem Klimaschutzgesetz (KSG). Zur Umsetzung des Reduktionspfades sind zusätzliche Maßnahmen erforderlich (z. B. CCS).

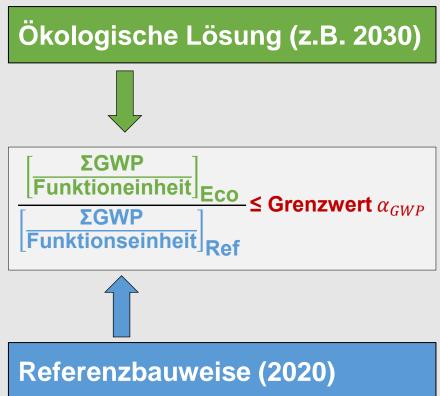
Systemgrenzen


- Rili regelt THG-Emissionen infolge Herstellung und Entsorgung des Bauteils oder der Tragstruktur und orientiert sich an Qualitätssiegel Nachhaltiges Gebäude des BMWSB (QNG)
 - Module A4 & A5 vernachlässigt, da zum Zeitpunkt der Planung noch nicht bekannt
 - Modul B4 vernachlässigt, da im Betrachtungszeitraum von 50 Jahren i.d.R.
 keine nennenswerten Ersatzmaßnahmen anfallen
 - Modul B6 entfällt, da Betrachtung auf Tragwerk beschränkt

DAfStb-THG RiLi

Betontechnische Lösungen





THG RiLi Teil 0: Nachweisformat

CO_{2,e} = äquivalente CO₂-Emissionen = Maßzahl für die Globale Erderwärmung (**Global Warming Potential, GWP**)

Nachweis: Wahlweise Bauteil- oder Tragwerksebene

- Grenzwerte α_{GWP,t} gelten sowohl für das Tragwerk als auch für die in den übrigen Teilen der Richtlinie geregelten Bauteilarten
- Referenzemissionen auf
 Bauteilebene (Decken) sind im
 Teil 1 der Richtlinie enthalten
- Referenzemissionen und zulässige Emissionen für das Tragwerk in Tabelle

S	1	2	3	4	5
	Treibhausgas- Minderungs-	Gültigkeitszeit- raum bis ein- schließlich zum Kalenderjahr	agwp,t	Zulässige Emissionen des Tragwerks [kg CO _{2,e} / m² _{BGF}]	
Z	klasse TM _t			Wohngebäude	Nichtwohngebäude und Bürogebäude
1	TM ₂₀₂₀	2020 ¹⁾	1	250	320
2	TM ₂₀₂₄	2024	0,75	188	240
3	TM ₂₀₂₆	2026	0,65	163	208
4	TM ₂₀₂₈	2028	0,56	140	179
5	TM ₂₀₃₀	2030	0,48	120	154
6	TM ₂₀₃₂	2032	0,42	105	134
7	TM ₂₀₃₄	2034	0,36	90	115
8	TM ₂₀₃₆	2036	0,31	78	99
9	TM ₂₀₃₈	2038	0,27	68	86
10	TM ₂₀₄₀	2040	0,23 ²⁾	58	74
11	TM ₂₀₄₂	2042	0,14 ²⁾	35	45
12	TM ₂₀₄₄	2044	0,05 ²⁾	13	16
13	TM ₂₀₄₆	2046	O ²⁾	0	0
					-

Referenzjahr

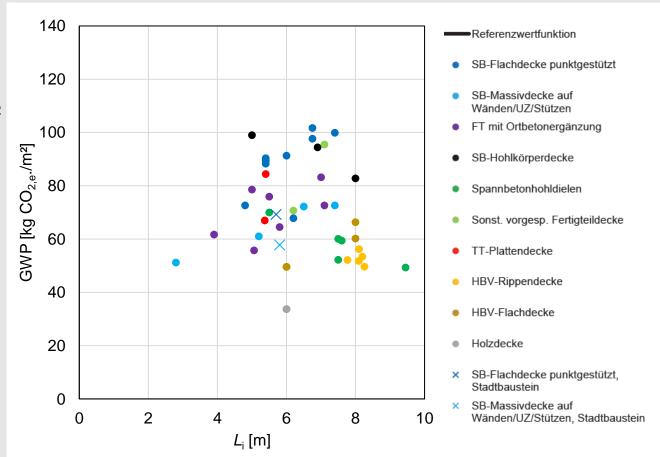
ab 2040 linear abgemindert nach Vorgaben aus dem Klimaschutzgesetz (KSG). Zur Umsetzung des Reduktionspfades sind zusätzliche Maßnahmen erforderlich (z. B. CCS).

- Spezifiziert die Regelungen von Teil 0 für die Anwendung auf Deckenbauteile und legt einen Referenzzustand für das Jahr 2020 fest
- Hierzu z\u00e4hlen z. B. Stahlbetondecken, Spannbetondecken, Stahl-Betonund Holz-Beton-Verbunddecken
- Funktionales Äquivalent ist 1 m² Deckenfläche
- Deckenfläche: Äußere Abmessungen des betrachteten Deckenabschnitts abzüglich größerer Öffnungen (> 2,50 m²)
- Nachweisführung:

 $\frac{\sum GWP_{Eco,i}/m^2}{\sum GWP_{Ref,i}/m^2} \le \alpha_{GWP,t}$ Gl. (1)

mit: GWP_{Eco,i}: Global Warming Potential in [kg CO_{2,e}] aus den Modulen A1-A3, C3, C4 nach Teil 0,

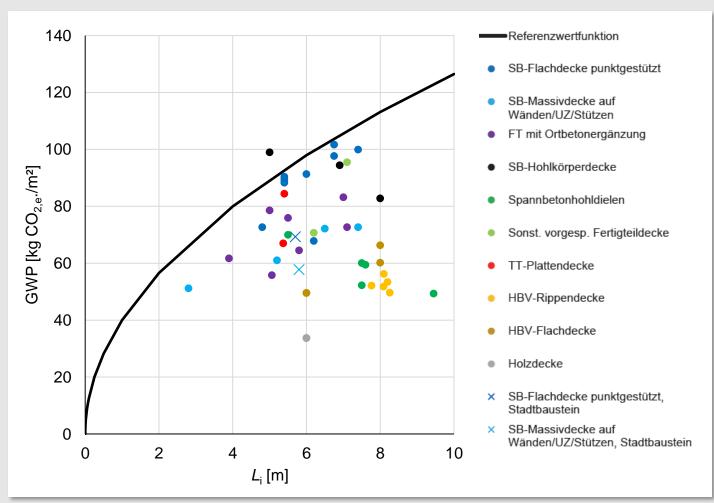
Anhang B, dieser Richtlinie für das betrachtete Deckenbauteil i


GWP_{Ref,i}: Global Warming Potential in [kg CO_{2,e}] für den Referenzzustand des

Deckenbauteils i nach Gl. (2.1) und Gl. (2.2) dieses Teils der Richtlinie

- Ermittlung eines Referenzzustands für das Jahr 2020 erfolgt aufbauend auf einer Umfrage zu Deckensystemen aus der Planungs- und Baupraxis sowie einer Literaturstudie
- Randbedingungen der betrachteten Daten:
 - Spannweite: 0 10 m
 - Char. Belastung (exkl. Eigenlast): 2,5 7,5 kN/m²
 - Druckfestigkeitsklasse ≥ C16/20

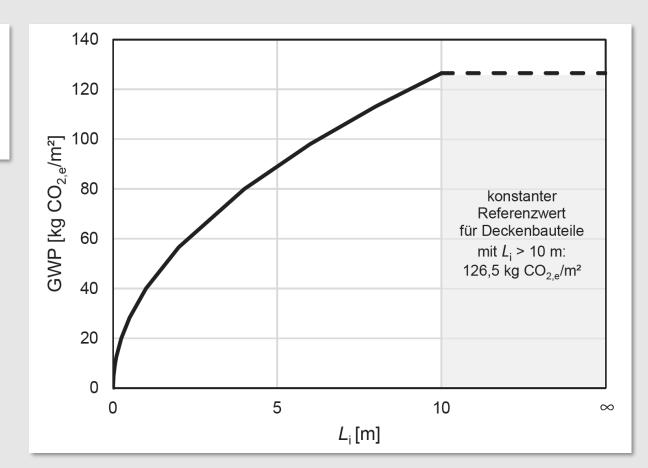
Deckenbauteil	Bewertete Querschnitte	
Punktgestützt	Deckenquerschnitt	
Liniengelagert	Deckenquerschnitt ohne Unterzüge	
Rippendecke	Deckenquerschnitt mit Rippen, ohne Unterzüge	



Ermittlung eines Referenzzustands für das Jahr 2020 erfolgt aufbauend auf einer Umfrage zu

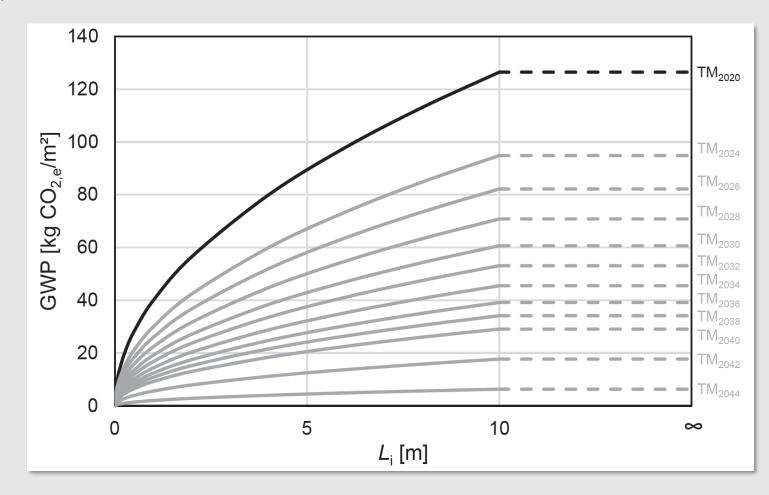
Deckensystemen aus der Planungs- und Baupraxis sowie einer **Literaturstudie**:

Referenzzustand erfasst 98 % der betrachteten Deckensysteme!

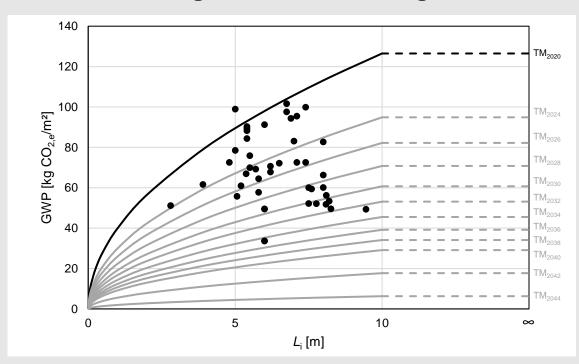


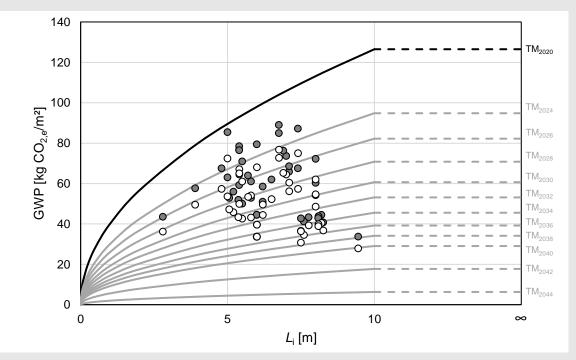
Referenzzustand in Abhängigkeit der Spannweite des betrachteten Deckensystems:

$$GWP_{Ref,i} = 40 \cdot \sqrt{L_i} \quad \left[\frac{\text{kg CO}_{2,e}}{\text{m}^2} \right] \quad \text{für } 0 \text{ m} \le L_i \le 10 \text{ m}$$
 $GWP_{Ref,i} = 126,5 \quad \left[\frac{\text{kg CO}_{2,e}}{\text{m}^2} \right] \quad \text{für } L_i > 10 \text{ m}$


- L_i ist Spannweite des betrachteten Deckenbauteils i in [m].
 Für zweiachsige Systeme ist die kurze Spannweite anzusetzen.
- Bei Belastungen > 7,5 kN/m² darf der Referenzwert für ein Deckensystem gleicher Spannweite herangezogen werden.

• Unter Berücksichtigung Grenzwerte α_{GWP,t} gemäß TM gilt Kurvenschar:

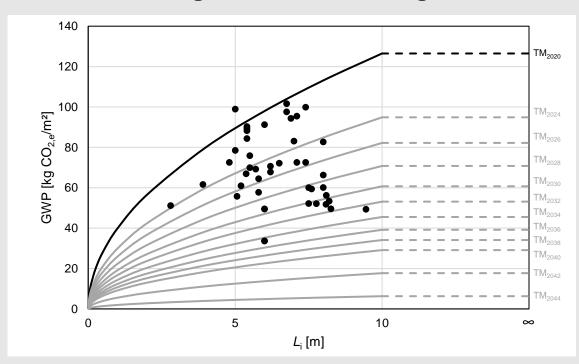

Treibhausgas- minderungsklasse <i>TM</i> _t	Gültigkeitszeitraum bis einschließl. zum Kalenderjahr	$a_{\scriptscriptstyle GWP,t}$
TM ₂₀₂₀	2020	1
TM ₂₀₂₂	2024	0,75
TM ₂₀₂₄	2026	0,65
TM ₂₀₂₆	2028	0,56
TM ₂₀₂₈	2030	0,48
TM ₂₀₃₀	2032	0,42
TM ₂₀₃₂	2034	0,36
TM ₂₀₃₄	2036	0,31
TM ₂₀₃₆	2038	0,27
TM ₂₀₃₈	2040	0,23
TM ₂₀₄₀	2042	0,14
TM ₂₀₄₄	2044	0,05
TM ₂₀₄₆	2046	0



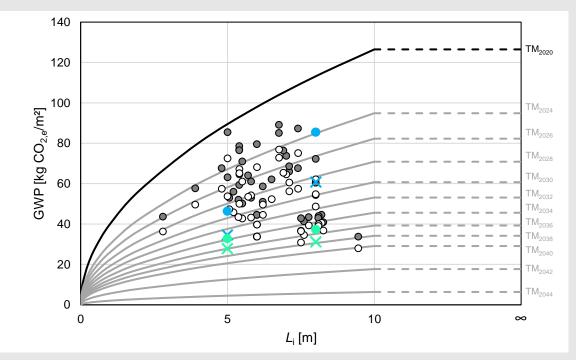
Einordnung der Deckensysteme in die Treibhausgas-Minderungsklassen:

Ergebnisse der Umfrage

Ergebnisse der Umfrage mit Ökobeton


- Beton auf Basis von CEM II ("Standard-Ökobeton") [1]
- Beton auf Basis von μCEM ("Laborbeton") [1]

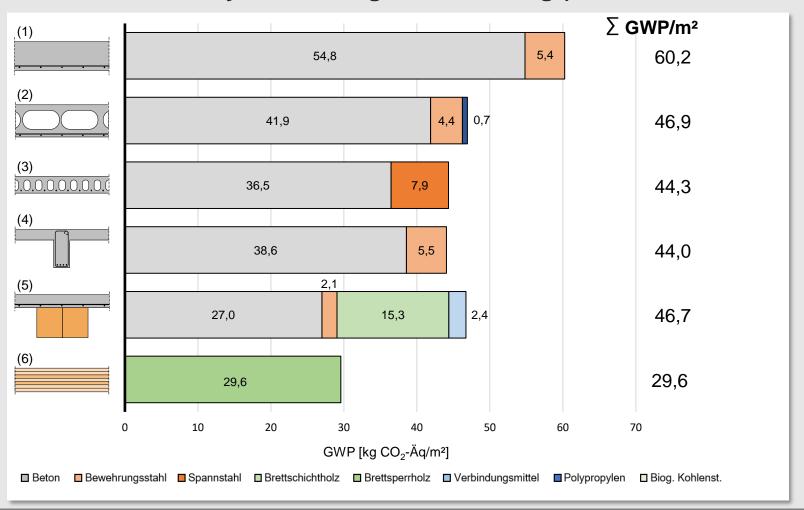
[1] Haist, M. et al.: Nachhaltig konstruieren und bauen mit Beton, in: Betonkalender 2022



Einordnung der Deckensysteme in die Treibhausgas-Minderungsklassen:

Ergebnisse der Umfrage

Ergebnisse der Umfrage mit Ökobeton



- X SB-Massivdecke mit Normalbeton / Laborbeton
- •/× SB-Rippendecke mit Normalbeton / Laborbeton [1]

[1] Haist, M. et al.: Nachhaltig konstruieren und bauen mit Beton, in: Betonkalender 2022

Ökobilanz Deckensysteme – Gegenüberstellung (Module A1-A3, C3, C4):

[Heckmann, M.; Glock, C.: Okobilanz im Bauwesen – Treibhausgasemissionen praxisüblicher Deckensysteme. Beton- un Stahlbetonbau 118 (2023), Heft 2, 2023, Berlin: Ernst & Sohn, 2023 S.110-123]

DAfStb RiLi – Zusammenfassung

- Basis der Richtlinie bilden Referenzzustände für die Grauen Emissionen (Herstellung und Entsorgung) auf Gebäudeebene und Bauteilebene (bisher Deckensysteme) für das Jahr 2020
- Ausgehend von Referenzzustand wird ein kontinuierlicher Reduktionspfad aufgezeigt, der den Anforderungen des Bundes-Klimaschutzgesetzes gerecht wird
- Zweijährige Treibhausgasminderungsklassen zur Vereinfachung und Verbesserung Planbarkeit
- Einfaches Nachweisformat, welches das GWP des betrachteten Bauwerks/Bauteils in das Verhältnis mit dem jeweiligen Referenzzustand setzt
- Ziel ist möglichst breite Anwendung, u.a. als Vertragsbestandteil, sowie als einheitliche Orientierungshilfe für alle Beteiligten der Wertschöpfungskette Bau

DAfStb RiLi – Aktueller Stand

mungen und/oder

oder der Türkei oder einem

itsprechen, sofern das geforderte

chstauglichkeit gleichermaßen dauerhaft

DEUTSCHER AUSSCHUSS FÜR STAHLBETON

DAfStb-Richtlinie

Treibhausgasreduzierte Tragwerke aus Beton, **Stahlbeton oder Spannbeton**

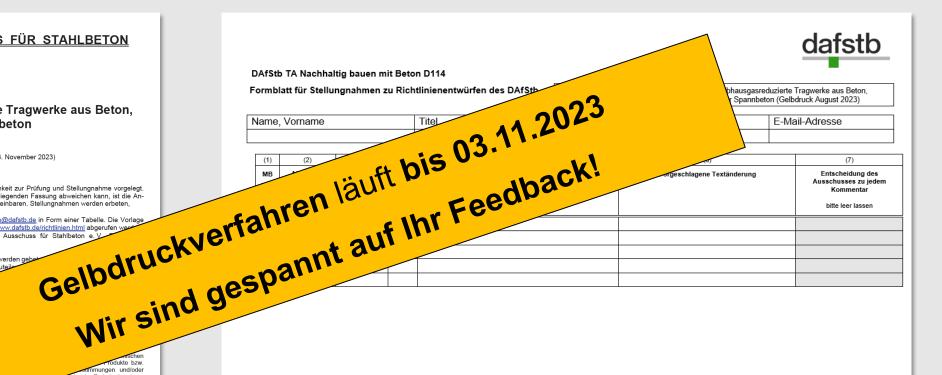
Entwurf August 2023 (Stellungnahmen bis 03. November 2023)

Anwendungswarnvermerk

Dieser Richtlinien-Entwurf wird der Öffentlichkeit zur Prüfung und Stellungnahme vorgelegt. Weil die beabsichtigte Richtlinie von der vorliegenden Fassung abweichen kann, ist die Anwendung dieses Entwurfes besonders zu vereinbaren. Stellungnahmen werden erbeten,

- vorzugsweise als Datei per E-Mail an info@dafstb.de in Form einer Tabelle. Die Vorlage der Tabelle kann im Internet unter http://www.dafstb.de/richtlinien.html abgerufen were
- oder in Papierform an den Deutschen Ausschuss für Stahlbeton e. V Straße 31, 10787 Berlin.

Die Empfänger dieses Richtlinien-Entwurfes werden gebei relevanten Patentrechte, die sie kennen, mitzuteile Verfügung zu stellen.


Teil 0: Grundlag Teil 1: Deckenba

Notifiziert gemäß o 9. September 2015 ü Vorschriften für die

Bezüglich der in die Anforderungen, die sich Prüfverfahren angewand technischen Vorschriften EFTA-Staat, der Vertrags Schutzniveau in Bezug auf erreicht wird

Herausgeber Deutscher Ausschuss für Stahlbeton e. V. - DAfStb Budanester Straße 31 Telefon: 030 2693-1320 info@dafstb.de

Der Deutsche Ausschuss für Stahlbeton (DAfSth) beansprucht alle Rechte, auch das der Übersetzung in fremde Sprachen. Ohne ausdrückliche Genehmigung des DAfStb ist es nicht gestattet, diese Veröffentlichung oder Teile daraus auf fotomechanischem Wege oder auf andere Art zu vervielfältiger

1 Art des Kommentars: allg = allgemein; tech = fachlich/technisch; red = redaktionell ANMERKUNG Spalten 2, 4, 5 müssen auf jeden Fall ausgefüllt werden

DAfStb-elektronische Stellungnahme, Version 2022-02

Vielen Dank für Ihre Aufmerksamkeit!

Univ.-Prof. Dr.-Ing. Christian Glock Michael Heckmann, M. Sc.

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau Univ.-Prof. Dr.-Ing. Michael Haist Dr.-Ing. Tobias Schack

Leibniz Universität Hannover Institut für Baustoffe Prof. Dr.-Ing. Udo Wiens

Deutscher Ausschuss für Stahlbeton (DAfStb) Geschäftsführer