

4. Jahrestagung des DAfStb – Braunschweig – 16. und 17. November 2016

Masten und Rohrprofile aus Schleuderbeton

Jörn Remitz, Marcel Wichert Technische Universität Braunschweig, iBMB, Fachgebiet Massivbau

Schleuderbeton

- Herstellung von Schleuderbeton
 - Zweiteilige Stahlschalung mit Laufringen
 - Einlegen des vorgefertigten Bewehrungskorbes
 - Einbringen des Betons und Schließen der Schalung
 - Rotation der Schalung auf einer Schleuderbank
- Wesentliche Vorteile von Schleuderbeton
 - Sehr dichte Gefügestruktur
 - Glatte Betonoberfläche
 - Hohe Druckfestigkeit
 - Hohe Dauerhaftigkeit
- Schleuderbeton in Kombination mit UHPC:
 - UHPSC = Ultra High Performance Spun Concrete
 - Weitere Verringerung der Porosität
 - Steigerung der Festigkeit
 - Verbesserung der Dauerhaftigkeit

Technische Universität Braunschweig

Einsatzgebiete und Anwendungen

- Anwendungsbeispiele sind u. a.:
 - Hochbaustützen
 - Werbemasten
 - Freileitungsmasten
 - Masten von Windenergieanlagen

Lufthansa Aviation Center, Frankfurt

Waldwipfelweg, Bayrischer Wald

 Beleuchtungsmasten und Masten f
ür die Verkehrsbeschilderung

Gründungs- und Fachwerkstrukturen

Freileitungsmast, Bad Kötzting (Bilder Europoles)

16.11.2016 | Jörn Remitz, Marcel Wichert | Masten und Rohrprofile aus Schleuderbeton | Seite 3

Kaltenkirchen

DAfSt

Forschungsvorhaben

Verbundforschungsvorhaben:

"Kompakthöchstspannungsmasten und -traversen (KoHöMaT)"

Bundesministerium für Wirtschaft und Energie

- Untersuchungen zu den Eigenschaften des UHPSC
- Untersuchungen zum Tragverhalten von Schleuderbetonmasten
 - aus UHPSC und hochfester Bewehrung
 - unter kombinierter Biege- und Querkraftbeanspruchung
 - unter kombinierter Biege-, Querkraft- und Torsionsbeanspruchung
- Untersuchungen zu Verbindungs- und Fügetechniken von Schleuderbetonmasten

Materialuntersuchungen

- Eigenschaften des UHPSC
 - Druckfestigkeit: $f_{\rm cm} \approx 140 \div 150 \, {\rm N/mm^2}$
 - Bruchdehnung: $\varepsilon_{cu} \approx 3.0 \%_0$
 - Elastizitätsmodul: $E_{\rm cm} \approx 58.500 \, {\rm N/mm^2}$

- Eigenschaften der Bewehrung
 - Spannstahllitzen St1660/1860 (0,62" und 0,5")
 - Betonstahl B500B und SAS670

Konfiguration Biegeversuche

Versuchskörper unter kombinierter Biege- und Querkraftbeanspruchung

Material und Vorspannung	VK-B0	VK-B1	VK-B1-K	VK-B2-K
Beton	C80	C140	C140	C140
Spannstahllitzen	36 <i>ø</i> 0,5"	64 <i>ø</i> 0,5"	40 <i>ø</i> 0,62"	22 <i>ø</i> 0,62"
	(33,5 cm ²)	(59,5 cm²)	(60,0 cm²)	(33,0 cm ²)
Betonstahl (Längsbewehrung)	B500	B500	SAS670	SAS670
	26 <i>ø</i> 32	26 <i>ø</i> 32	25 <i>ø</i> 28	27 <i>ø</i> 22
Streckgrenze $A_{\rm s} \cdot f_{\rm yk}$ [MN]	10,5	10,5	10,3	6,9
Vorspannung		1.360 N/mm²		
Ausnutzung des Betons $\sigma_{ m c,p0}/f_{ m ck}$	0,19	0,19	0,19	0,14

Durchführung Biegeversuche

- Versuchsaufbau
 - Horizontaler Versuchsaufbau auf dem Firmengelände von EUROPOLES
 - Krafteinleitung ins Fundament über Stahlfußplatten und Anschlussbewehrung
 - Belastung mit hydraulische Presse am Mastzopf
 - Rollenlager im oberen Drittelpunkt zur vertikalen Unterstützung
- Versuchsdurchführung
 - 10 Be- und Entlastungszyklen auf Gebrauchslastniveau
 - Stufenweise Belastung bis zur Traglast

Versagen Biegeversuche

VK-B0VK-B1VK-B1-KVK-B2-KC80; B500; 0,5"-LitzeC140; B500; 0,5"-LitzeC140; S670; 0,62"-LitzeC140; S670; 0,62"-Litze

Technische Universität Braunschweig

Auswertung Biegeversuche

- Be- und Entlastungszyklen
 - Nach Entlastung wurden die Risse geschlossen und der Versuchsträger kehrte in seine Ausgangsposition zurück
- Belastung bis zur Traglast
 - Plötzliches Betondruckversagen nach Erreichen der Fließgrenze der Betonstahllängsbewehrung
 - "Schollenartige" Betonabplatzungen bei VK-B2-K
 - Traglaststeigerung von ca. 30 % bei Verwendung von ultrahochfestem Beton
 - Keine signifikante Veränderung im Trag- und Verformungsverhalten zwischen den unterschiedlichen Bewehrungskonzepten
 - \rightarrow Bei Verwendung von SAS670 geringere Menge an Bewehrung erforderlich
 - → Verwendung von 0,62"-Litzen möglich

Konfiguration Torsionsversuche

Versuchskörper unter kombinierter Biege-, Querkraft- und Torsionsbeanspruchung

L = 14,0 m

Material und Vorspannung	VK-T0	VK-T1	VK-T1-K	VK-T2-K
Beton	C80	C140	C140	C140
Spannstahllitzen	12 <i>ø</i> 0,5"	24 <i>ø</i> 0,5"	14 <i>ø</i> 0,62"	14 <i>ø</i> 0,62"
	(11,2 cm²)	(22,3 cm ²)	(21,0 cm ²)	(15,8 cm²)
Betonstahl (Längsbewehrung)	B500	B500	SAS670	SAS670
	30 <i>ø</i> 20	24 <i>ø</i> 20	22 <i>ø</i> 18	28 <i>ø</i> 18
Streckgrenze A _s · f _{yk} [MN]	4,7	3,9	3,8	4,7
Vorspannung		1.360 N/mm ²		
Ausnutzung des Betons $\sigma_{c.p0}/f_{ck}$	0,12	0,14	0,14	0,12

Durchführung Torsionsversuche

- Versuchsaufbau
 - Horizontaler Versuchsaufbau auf dem Firmengelände von EUROPOLES
 - Krafteinleitung ins Fundament über Stahlfußplatten und Anschlussbewehrung
 - Exzentrische Belastung am Mastzopf über eine Traverse
 - Rollenlager auf Höhe der Lasteinleitung zur vertikalen Unterstützung
- Versuchsdurchführung
 - 10 Be- und Entlastungszyklen auf Gebrauchslastniveau
 - Stufenweise Belastung bis zur Traglast

Versagen Torsionsversuche

Auswertung Torsionsversuche

- Belastung bis zur Traglast
 - Plötzliches Betondruckversagen nach Erreichen der Fließgrenze der Betonstahlquerbewehrung
 - "Schollenartige" Betonabplatzung bei VK-T2-K
 - Gleichwertiges Tragverhalten der verschiedenen Bewehrungskonzepte kann bestätigt werden
 - Nachrechnung mittels FEM ergibt eine gute Übereinstimmung
 - Abweichung zwischen experimenteller und rechnerischer Traglast bei VK-T2-K kann auf die schollenartigen Betonabplatzungen infolge des hohen Bewehrungsgrades im Bereich der Stahlfußplatte zurückgeführt werden

Zapfenverbindung

- Verbindungselement zwischen UHPSC-Mast und Gründung sowie zwei Mastsegmenten
- Einfaches und schnelles Errichten am Aufstellort
- Verbindungszapfen
 - Ortbeton mit Vollquerschnitt
 - UHPSC mit Kreisringquerschnitt
- Vermörtelte Fuge zur kraftschlüssigen Verbindung und zum Ausgleich von Bautoleranzen
- Profilierung auf der Außenseite des Zapfens

Waldwipfelweg, Bayrischer Wald (Europoles)

Stütze Moschee Algier (Europoles)

Technische Universität Braunschweig

Tragverhalten der Zapfenverbindung

Grenzfall 1: Lastabtrag über ein horizontales Kräftepaar

- Wenn Tragfähigkeit des Mörtels erreicht oder Steifigkeit des Zapfen zu gering ist
- Führt zu hoher Querkraftbeanspruchung im Mast
 - → Bestimmung der Fugentragfähigkeit mit Schub-Druck-Versuchen

- Grenzfall 2: Lastabtrag über eine schubfeste Verbundfuge
 - Wenn Tragfähigkeit des Mörtels ausreicht
 - Verbindung verhält sich wie ein monolithisches Bauteil
 - → Bestimmung der Fugentragfähigkeit mit Push-Through-Versuchen

Durchführung Schub-Druck-Versuche

- Materialien analog zu Gro
 ßversuchen
 - Mast-Teil: Ultrahochfester Beton
 - Zapfen-Teil: Normalfester Beton
 - Fuge: Hochfester Vergussmörtel, Profilierung mit Noppenfolie
- Getrennte Herstellung der Versuchskörperhälften (Zapfen- u. Mast-Teil)
- Nachträgliche Herstellung der Mörtelfuge
- Variation der Fugenneigung α (0°, 10°, 20°, 30°, 47,5°, 50° und 55°)

Ergebnisse Schub-Druck-Versuche

• $\alpha \leq 30^{\circ}$ Druckbruch: Versagen im Zapfen-Teil; unbeeinflusst von Fuge

• $\alpha \ge 47,5^{\circ}$ Schubbruch: Versagen an glatter Fugengrenzfläche

Durchführung Push-Through-Versuche

- Materialien analog zu Gro
 ßversuchen
 - Mast-Teil: Ultrahochfester Schleuderbeton
 - Zapfen-Teil: Normalfester Beton
 - Fuge: Hochfester Vergussmörtel, Profilierung mit Noppenfolie
- Nachträgliche Herstellung der Mörtelfuge
- Variation der Einbindetiefe L_E (200, 300, 400 mm)

Ergebnisse Push-Through-Versuche

- Traglasten steigen mit zunehmender Einbindetiefe
- Last fällt schlagartig bei Erstriss im Mast-Teil
- Aufnehmbare Last nach Erstriss beträgt ca. 42 % der Traglast
- Max. Schubspannungen in den Versuchen vergleichbar ($\tau_{max} \approx 6.3 \text{ N/mm}^2$)
- Schubspannungsverlauf nach Erstriss nahezu konstant
- Versagen an profilierter Grenzfläche

Technische Universität Braunschweig

	Mast VK-B3-K	Zapfen VK-Z3-K	Mast VK-B4-K	Zapfen VK-Z4-K				
Abmessungen:								
Bauteillänge	26,1 m	2,8 m	26,1 m	2,8 m				
Außendurchmesser Fuß	1,780 m	1,452 m	1,780 m	1,440 m				
Außendurchmesser Zopf	1,260 m	1,402 m	1,260 m	1,440 m				
Wandstärke Fuß/Zopf	130 mm/100 mm	200 mm/200 mm	130 mm/100 mm	-				
Material:								
Beton		C50						
Spannstahllitzen		-						
Betonstahl (Längsbewehrung Zapfenbereich)	SAS670 12 <i>ø</i> 35	B500 90 <i>φ</i> 28	SAS670 12 <i>ø</i> 35	Β500 127 <i>φ</i> 32				
Betonstahl (Querbewehrung Zapfenbereich)	B500							
	φ 12/5; 2x4 φ 20/7	<i>φ</i> 12/7	φ 12/5; φ 20/4	<i>φ</i> 25/7				

Durchführung Zapfenversuche

- Versuchsaufbau analog zu Biegeversuchen
 - Krafteinleitung ins Fundament über Zapfen, der mit Stahlfu
 ßplatten mit dem Versuchsstand verbunden ist
 - Mast und Zapfen werden vor Prüfung gefügt und vermörtelt
- Versuchsdurchführung
 - Belastung 1: 10 Be- und Entlastungszyklen auf Gebrauchslastniveau
 - Belastung 2: Stufenweise Belastung bis ca. 450 kN
 - Belastung 3: Stufenweise Belastung bis zur Traglast

Versagen Zapfenversuche

VK-B3/Z3-K

- Duktiles Versagen des Masts
- Ankündigung des Versagens durch Aufreißen des Mastquerschnitts im Verbindungsbereich

VK-B4/Z4-K

- Schlagartiges Versagen des Masts in der Druckzone oberhalb der Verbindung
- Versagen ohne Vorankündigung
- Gleichmäßig verteilte Biegezugrisse

Auswertung Zapfenversuche

VK-B3/Z3-K

- Lastabtrag entsprechend Grenzfall 1
- Querbewehrung im Mast erreicht Streckgrenze durch hohe Beanspruchung
- Deutlichen Zunahme der Kopfauslenkung ohne Laststeigerung
- Druckzone nicht ausgenutzt

VK-B4/Z4-K

- Lastabtrag entsprechend Grenzfall 2
- Biegedruckzone versagt bei Erreichen der Traglast
- Keine weitere Verformung möglich
- Querbewehrung im Mast nicht vollständig ausgenutzt

Zusammenfassung

- Traglaststeigerung durch den Einsatz von ultrahochfestem Schleuderbeton (UHPSC)
- Reduzierung der Betonstahlmenge durch den Einsatz von SAS670 möglich
- Schlagartiges Betondruckversagen nach Erreichen der Fließgrenze der Betonstahlbewehrung (starke Rissbildung und große Verformungen)
- Lastabtrag innerhalb einer Zapfenverbindung ist stark abhängig von
 - Tragfähigkeit der Verbundfuge
 - Querbewehrungsgrad des Masts
 - Steifigkeit des Zapfens
- Monolithisches Verhalten der Zapfenverbindung im Falle einer schubfesten Verbundfuge
- Andernfalls hohe Querkraftbeanspruchung des Masts im Verbindungsbereich
 → äußerst duktiles Versagen möglich

Vielen Dank für Ihre Aufmerksamkeit!

Vielen Dank für die Unterstützung und Zusammenarbeit:

Bundesministerium für Wirtschaft und Energie

FICHTNER

Jörn Remitz, M.Sc.

Marcel Wichert, M.Sc.

mail: j.remitz@ibmb.tu-bs.de

mail: m.wichert@ibmb.tu-bs.de

Prof. Dr.-Ing. Martin Empelmann

mail: m.empelmann@ibmb.tu-bs.de

