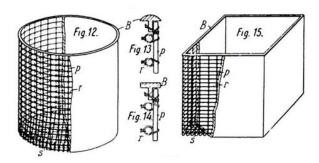
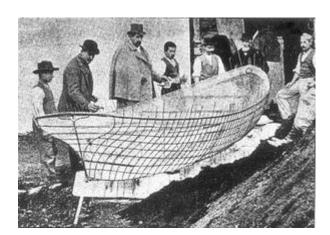


4. Jahrestagung des DAfStb – Braunschweig – 16. und 17. November 2016

Mikrobewehrung in dünnen Betonbauteilen

Daniel Busse

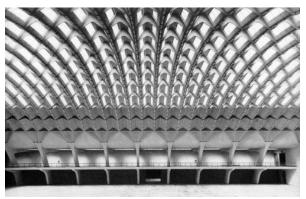

Technische Universität Braunschweig, iBMB, Fachgebiet Massivbau


Mikrobewehrung

Von Monier's Blumenkübeln und Lambot's Betonbooten...

alchetron.com selbst.de ACI 549R-16 (Draft)

Mikrobewehrung

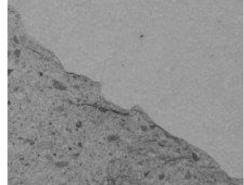

...über P. L. NERVI's "ferro-cemento"...

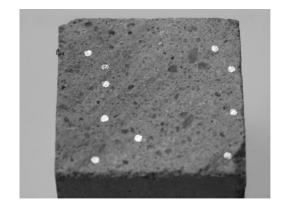
thearchiblog.wordpress.com
architetto.info
db-bauzeitung.de

... the most brilliant artist in reinforced concrete of our time Nikolaus Pevsner

Mikrobewehrung

...zum High-Performance-Werkstoff.




beton-campus.de

textilbeton-aachen.de

ingenieur.de

DFG SPP 1542 "Leicht Bauen mit Beton"

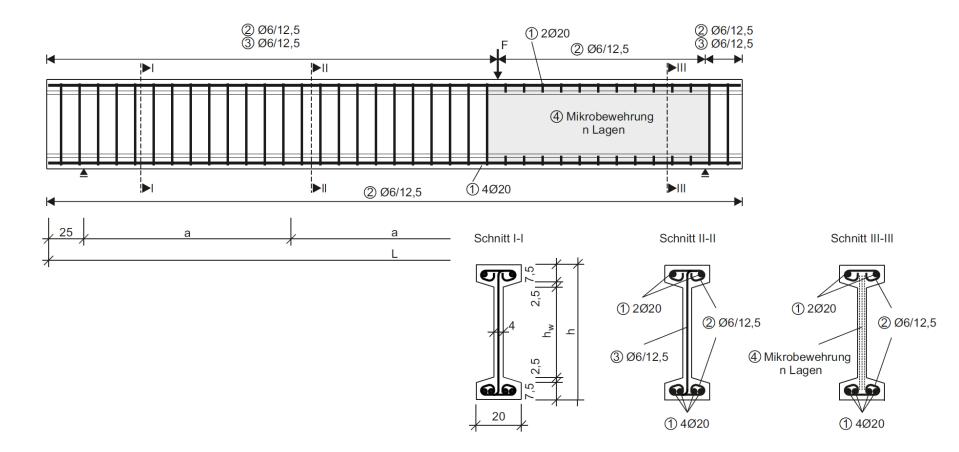
- Optimierung leichter, stabförmiger Bauteile
- Kraftfluss- und Materialoptimierung

2D- und 3D-Fachwerkstrukturen

- Überwiegende Normalkraftbeanspruchung
- Sekundäre Biege- und Querkraftbeanspruchung

Ultraleichte, dünnwandige Betonbauteile

- Wandstärke d = 2,0 3,0 cm
- Hochfester, selbstverdichtender Feinkornbeton
- Mehrlagige Mikrobewehrung $\emptyset = 0.5 2.0 \text{ mm}$


flickr.com

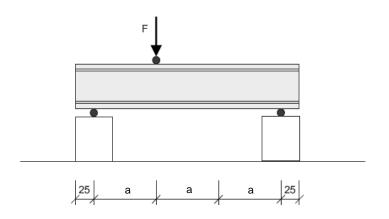
Grundlagen

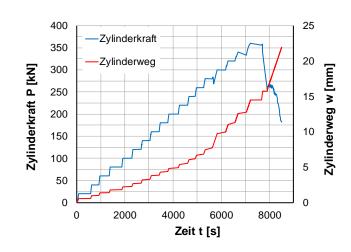
Versuchsprogramm

VK	L	h	b_{w}	a/d	Bewehrung			
Q0	4,00 m	60 cm	4 cm	2,5	B500 Ø6	$\rho_{\rm w} = 0.6 \%$		
Q1	4,00 m				MB Ø1/20	$\rho_{\rm w} = 0.5 \ \%$		
Q2	4,70 m					$\rho_{\rm w} = 1.0 \%$		
Q3	4,60 m					$\rho_{\rm w} = 1.5 \%$		
Q4	3,20 m	40 cm 80 cm				$\rho_{\rm w} = 0.5 \%$		
Q5	3,20 m					$\rho_{\rm w} = 1.5 \%$		
Q6	5,20 m							
Q7	3,85 m	60 cm		2,0		$\rho_{\rm w} = 0.5 \%$		
Q8	3,02 m			1,5				

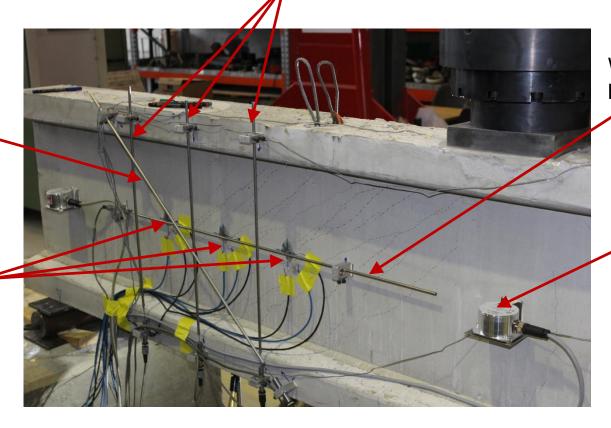
DAfStb

Herstellung der Versuchskörper





Versuchsaufbau & -durchführung



Messtechnik

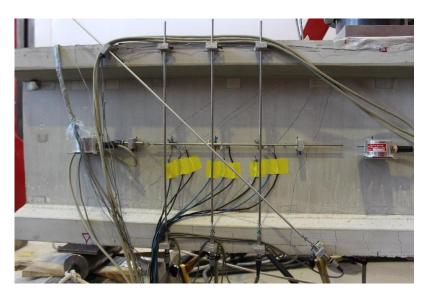
Wegaufnehmer vertikal

Wegaufnehmer diagonal

DMS-Rosetten

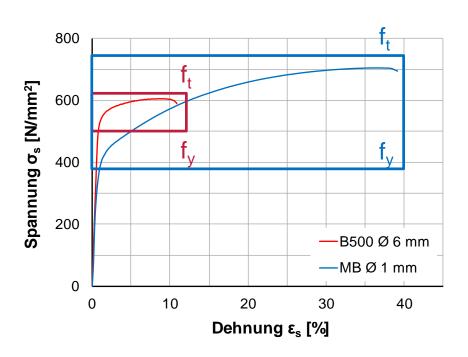
Wegaufnehmer horizontal

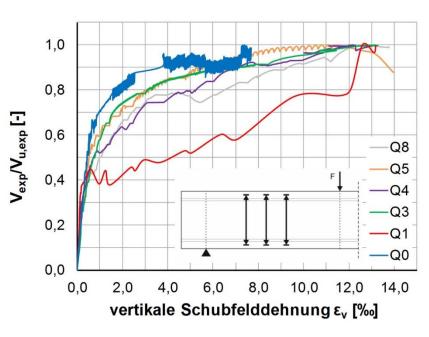
Neigungssensor



Messtechnik

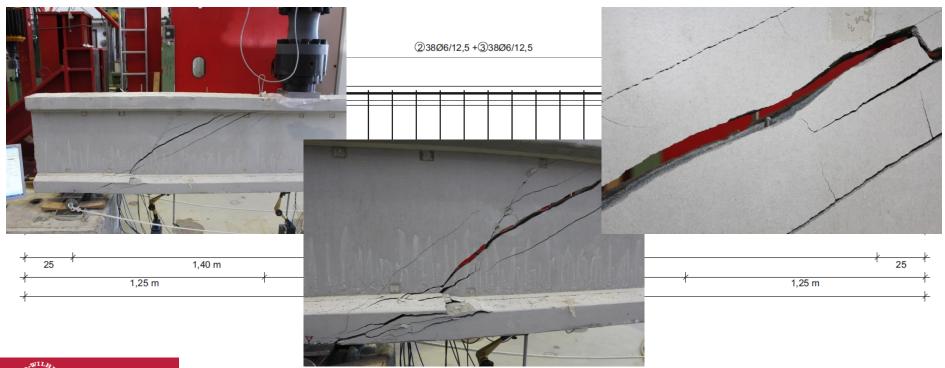
- Flächige Verformungsmessung mit GOM Aramis-System
- Markierung des Rissbilds





Tragverhalten

- Last-Verformungs-Kurven
- Aktivierung der Querkraftbewehrung

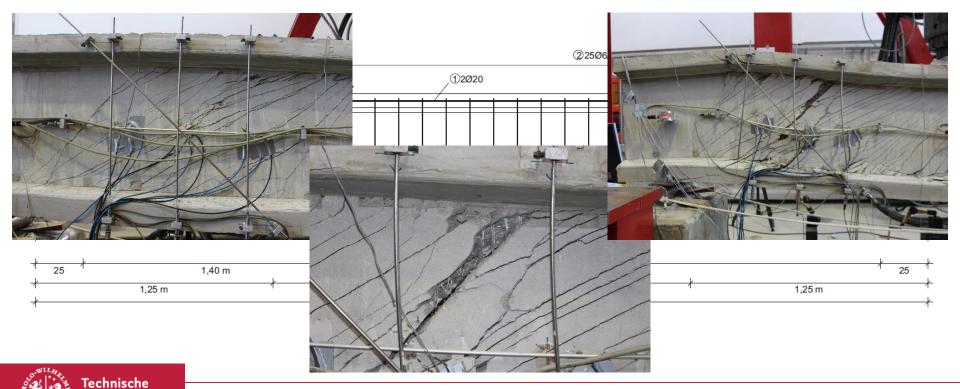


Tragverhalten

Q0 - Referenzversuch

- Bewehrung B500
- grobes Rissbild
- Versagen der Zugstrebe

Tragverhalten

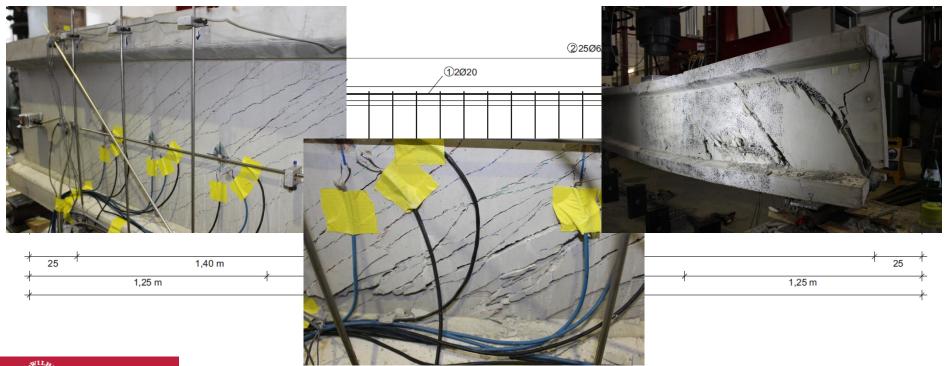

Q1 – Mikrobewehrter Beton

- Mikrobewehrung Ø1/20 $\rho_{\rm w}$ = 0,5 %
- feines Rissbild

Universität

Braunschweig

Versagen der Zugstrebe



Tragverhalten

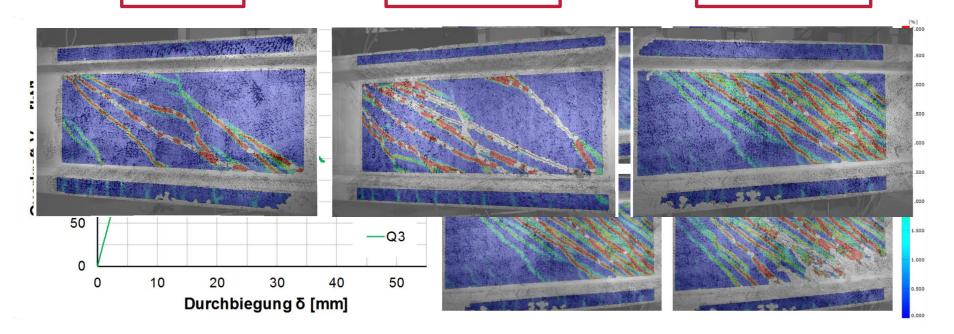
Q3 – Mikrobewehrter Beton

- Mikrobewehrung Ø1/20 $\rho_{\rm w}$ = 1,5 %
- feines Rissbild
- Sekundäres Betonversagen

Vergleich der Bewehrungskonzepte

- B500: grobes Rissbild, schlagartiges Versagen
- Mikrobewehrung: feines Rissbild, robustes Versagen

Q1 - MB (0,5 %) Q3 - MB (1,5 %) Q0 - B500 250 Querkraft Vexp [kN] 200 3 150 2 100 4 1 50 Q3 10 20 50 Durchbiegung δ [mm]

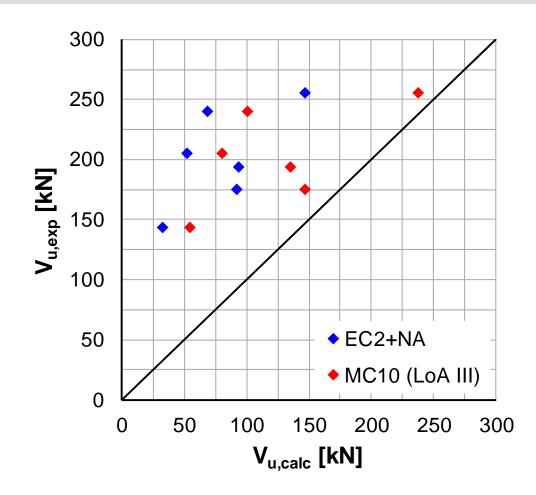

Vergleich der Bewehrungskonzepte

- B500: grobes Rissbild, schlagartiges Versagen
- Mikrobewehrung: feines Rissbild, robustes Versagen

Q0 - B500

Q1 - MB (0,5 %)

Q3 - MB (1,5 %)



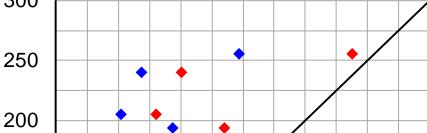
Ansatz nach EC2+NA

- Fachwerkmodell mit Rissreibung
- $V_{R} = V_{S}$

Ansatz nach MC2010 (LoA III)

- Simplified Modified Compression Field Theory (SMCFT) + General Stress Field Approach
- $V_R = V_C + V_S$

Ansatz nach EC2+NA


Fachwerkmodell mit Rissreibung

•
$$V_R = V_S$$

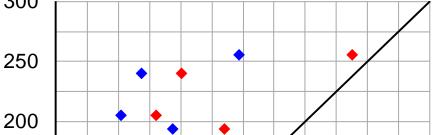
Ansatz nach MC2010 (LoA III)

Simplified Modified Compression

300

VK	$V_{\rm exp}$	[kN]	V _{EC2+N}	IA [kN]	Y _{mod}	V _{MC10}	[kN]	Y _{mod}
Q0	175	R	92	R	1,9	147	R	1,2
Q1	206	R	52	R	4,0	80	R	2,6
Q3	255	С	147	R	1,7	237	R	1,1
Q4	143	R	33	R	4,4	55	R	2,6
Q5	194	С	94	R	2,1	135	R	1,4
Q8	240	R	68	R	3,5	101	R	2,4

Ansatz nach EC2+NA


- Fachwerkmodell mit Rissreibung
- $V_R = V_S$

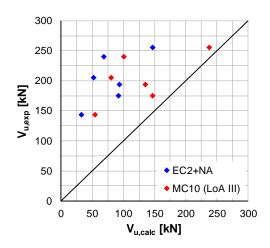
Ansatz nach MC2010 (LoA III)

Simplified Modified Compression

300

200

VK	$V_{\rm exp}$	[kN]	V _{EC2+N}	IA [kN]	Y _{mod}	V _{MC10}	[kN]	Y _{mod}
Q0	175	R	92	R	1,9	147	R	1,2
Q1	206	R	52	R	4,0	80	R	2,6
Q3	255	С	612	С	0,42	271	С	0,94
Q4	143	R	33	R	4,4	55	R	2,6
Q5	194	С	392	С	0,49	192	С	1,01
Q8	240	R	68	R	3,5	101	R	2,4


Zusammenfassung

- Querkraftversuche an mikrobewehrten Versuchskörpern
 - Hohe Tragfähigkeiten
 - Gute Versagensvorankündigung
 - Kein schlagartiges Versagen
- Konservative Abschätzung der Tragfähigkeit mit aktuellen Ansätzen
 - EC2+NA \rightarrow MW = 4,0
 - MC10 (LoA III) \rightarrow MW = 2,5

Ausblick

- Weitere Querkraftversuche und Auswertungen
- Bewertung und Erweiterung der Berechnungen
 - Berücksichtigung der Steglängsbewehrung
 - Erfassung des sekundären Betonversagens

Vielen Dank für Ihre Aufmerksamkeit!

Vielen Dank für die Unterstützung:

Dipl.-Ing. Daniel Busse mail: d.busse@ibmb.tu-bs.de

Prof. Dr.-Ing. Martin Empelmann mail: m.empelmann@ibmb.tu-bs.de

