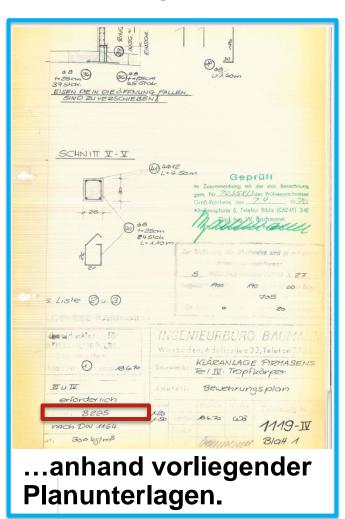


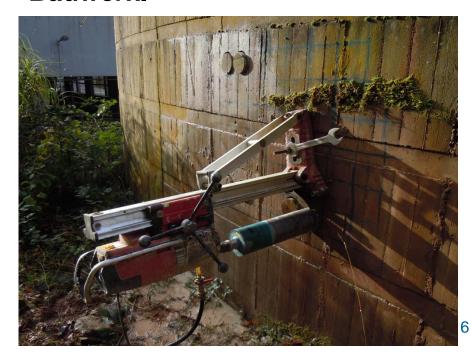
bisher...

Bundesministerium für Verkehr, Bau und Stadtentwicklung

Abteilung Straßenbau

Richtlinie zur Nachrechnung von Straßenbrücken im Bestand (Nachrechnungsrichtlinie)


Ausgabe: 05/2011


DAfStb Sachstandsbericht

Teil I

Teil II

...durch Untersuchungen am Bauwerk.

Sachstandsbericht (Heft 616)

Autoren

UA Bauen im Bestand

Prof. Schnell, TU Kaiserslautern (Obmann)

Dr. Brauer, Dormagen

Dr. Fingerloos, DBV

Prof. Grünberg, TU Hannover

Prof. Marx TU Hannover

Prof. Maurer, TU Dortmund

Stauder, VBI

Prof. Zilch, TU München

historischer Normenverlauf im Stahlbetonbau in Deutschland

Zeitraum	Bemessung	Festlegung der Materialeigenschaften	Materialprüfung (Druckfestigkeit)	
1904-1907	Preußische Bestimmungen 17.04.1904	Preußische Bestimmungen 17.04.1904	-	
1907-1916	Preußische Bestimmungen 24.05.1907	Preußische Bestimmungen 24.05.1907	-	
1916-1925	DAfEb 13.01.1916	DAfEb 13.01.1916	Anhang DAfEb 13.01.1916	
1925-1932	DIN 1045	DIN 1045	DIN 1048	
	September 1925	September 1925	September 1925	
1932-1937	DIN 1045	DIN 1045	DIN 1048	
	April 1932	April 1932	April 1932	
1937-1943	DIN 1045	DIN 1045	DIN 1048	
	Mai 1937	Mai 1937	Oktober 1937	
1943-1959	DIN 1045	DIN 1045	DIN 1048	
	April 1943	April 1943	1943 x	
1959-1972	DIN 1045	DIN 1045	DIN 1048	
	November 1959	November 1959	1943 x	
1972-1978	DIN 1045 Januar 1972	DIN 1045 Januar 1972 DIN 1084 Blatt 1-3 Februar 1972	DIN 1048 Blatt 1 Januar 1972	

historischer Normenverlauf im Stahlbetonbau in Deutschland

Zeitraum	Bemessung	Festlegung der Materialeigenschaften	Materialprüfung (Druckfestigkeit)
1978-1988	DIN 1045 Dezember 1978	Dezember 1978 DIN 1084 Teil 1-3 Dezember 1978	DIN 1048 Teil 1 Dezember 1978
1988-2001	DIN 1045 Juli 1988	DIN 1045 Juli 1988 DIN 1084 Teil 1-3 Dezember 1978	DIN 1048 Teil 1 Dezember 1978+ Juni 1991
2001	DIN 1045-1 Juli 2001 +Berichtigung 2 Juni 2005	DIN EN 206-1 Juli 2001 DIN 1045-2 Juli 2001	DIN 1048 Teil 5 Juni 1991 DIN EN 12390-1 Februar 2001 DIN EN 12390-2 Juni 2001 DIN EN 12390-3 April 2004
2008	DIN 1045-1 August 2008	DIN EN 206-1 Juli 2001 DIN 1045-2 August 2008	DIN 1048 Teil 5 Juni 1991 DIN EN 12390-1 Februar 2001 DIN EN 12390-2 August 2009 DIN EN 12390-3 Juli 2009

DIN 1045:1959-11

Historische technische Regelwerke für den Beton-, Stahlbetonund Spannbetonbau

Bemessung und Ausführung

Frank Fingerloos (Hrsg.)

5:1959-11

Bestimmungen

r Baustelle ist bei Betonstäben der Gruppen II, III und IV der Faltts durchzuführen*), auch bei Betonstahl I soll er in der Regel durchden; bei Bewehrungsmatten, die nicht gebogen werden, darf er unter egen der Versuche, die beim Schweißen von Bewehrungen durchzu

l, ygl. 3 14 ZH. 16. erwach ung durch die Baupolizei. Die Ergebnisse gen nach Ziff. 1 bis 4 müssen auf der Baustelle für den Baupolizei. reitliegen. Bei Beton B 160, B 225 und B 300 sind die Ergebnisse üfungen der Baupolizei vor der Abnahme der Bauteile schriftlich mit.

aupolizei kann verlangen, daß weitere Prüfungen durchgeführt B. vor dem Ausschalen (§ 13 Ziff. 2 letzter Absatz) und heim von Zugbewehrungen (§ 14 Ziff. 1 c), wenn nötig unter ihrer Aufdurch eine staatliche Prüfanstalt.

§ 7 Probebelastung **)
bebelastungen sollen auf das unbedingt Notwendige beschränkt
s sind bei Hochbauten nicht vor 45tägiger Erhärtung des Betons vor-Hierbei ist darauf zu achten, daß bei balkenartigen Tragwerken keine stigkeitsberechnung nicht vorgesehene Einspannung oder Gewölbe-ntritt.

onderen Fällen empfiehlt es sich, einzelne Bauteile durch Stemm-trennen und bis zum Bruch zu belasten, wenn es ohne Schädigung bauwerks möglich ist

lastung muß in sich beweglich sein und der Durchbiegung folgen

Deckenplatten und Balken soll als Probelast höchstens das 1,5fache relast p aufgebracht werden. Ist p größer als $1000~\rm kp/m^2$, so kann st bis auf den Wert p ermäßigt werden.

Brücken und anderen Bauwerken, bei denen auf die Vermeidung

rfür sind zur Zeit zugelassen: undesanstalt für Materialprüfung, Berlin-Dahlem, astitut für Bauforschung und Materialprüfungen des Bauwesens an echnischen Hochschule Stuttgart,

laterialprüfungsamt an der Technischen Hochschule Darmstadt,

ches Amt für Material- und Warenprüfung Nr. 371 bei der Techn Hochschule Dresden,

faterialprüfungsamt der Bayerischen Landesgewerbeanstalt Nürnberg, aatliche Materialprüfungsamt bei der Technischen Hochschule Aachen. imtliche Prüfstelle des mechanisch-technischen Laboratoriums der ischen Hochschule München,

isteien neutschile nunnen, kaatliche Materialprüfungsamt Nordrhein-Westfalen, rsächsisches Landesverwaltungsamt — Eichwesen —, Hannover, en der Prüfungen für Betonrippenstahl s. Richtlinien für Zulassung-tung von Stäben mit Nenndurchmessern bis zu 26 mm vgl. S. 825 und

egen der Auslegung s. Ergänzungserlaß "Bestimmungen des Dt. A. f., 7. Aufl., Berlin 1960, S. 58.

Bauwerke aus Stahlbeton - DIN 1045

sichbarer Zugrisse im Beton besonderer Wert gelegt werden muß, sind höchstens die wirklichen, der Berechnung zugrunde gelegten Verkehrslasten aufzubringen. Auf keinen Fall darf aber die volle rechnungsfähige Last bald nach dem Ausrüsten aufgebracht werden.

4. Ist die ständige Last noch nicht voll vorhanden, so ist die Probelast um Betragt zu erhöhen.

den fehlenden Betrag zu erhöhen.

5. Die Probelast muß mindestens 6 Stunden liegenbleiben; erst dann ist lie größte Durchbiegung zu messen. Die bleibende Durchbiegung ist frühestens 12 Stunden nach Beseitigung der Probelast festzustellen.

Abgesehen vom Einfluß etwaiger Auflagersenkungen darf die bleibende purchbiegung im allgemeinen höchstens ¹/₄ der gemessenen Gesamtdurch-

2. Bauausführung § 8 Bereitung des Betons *)

1. Zugabe der Zuschläge. Die Zuschläge sollen möglichst nach Gewicht zugegeben werden. Werden sie nach Raumteilen abgemessen, so sind die Gewichte der abgemessenen Zuschlagmengen häufig nachzuprüfen; dies gilt auch dann, wenn selbstfätige Abmeßvorrichtungen vorhanden sind.

Bei Beton der Güteklasse B 120 dürfen die Zuschläge ungetrennt in einer

For bestund to drukskasse. Ihre Zusammensterung muß aber mindestens dem komung verwendet werden. Ihre Zusammensterung muß aber mindestens dem brauchbaren Bereich (vgl. Bild 2) entsprechen. Bei den Günkelassen B 100 und B 225 müssen die Zuschlagstoffe, um eine gleichnüßige Zusammensetzung zu gewährleisten, getrennt in zwei verschiedenen Kömungen, unter 7 mm und über 7 mm, angeliefert*) und beim Mischen derart kordungen, dater / mm und dier / mm, angenerer - und beim missenen derart zugegeben werden, daß die Kornzusammensetung des gesamter Zuschlages mindestens im brauchbaren Bereich (vgl. Bild 2) ¹⁹) liegt; jedoch darf bei der Güteklasse B 225 das Gewichtsverhältnis zwischen Feinem (unter 7 mm) und Grobem (über 7 mm) im Gesamtgemenge nicht größer als 60:40 sein

Bei der Güteklasse B 300 sind die Zuschläge getrennt, zum mindestens nach den drei Körnungen 0 bis 3 mm, 3 bis 7 mm und über 7 mm, anzuliefern und so zu mischen, daß die Kornzusammensetzung des Sandes und des gesamten Gemenges im besonders guten Bereich (vgl. Bild 1 und 2) 16) liegt (vgl. § 5

2. Zementgehalt¹. Der Zement wird nach Gewicht zugemessen. Beim Festlegen der Mischung ist der Zementanteil in Gewicht (kg) auf das mir Fertigbeton anzugeben. Das Mischgut muß so viel Zement enthalten, daß ein dichter Beton entsteht, der eine rostsichere Umhüllung der Stahleinlagen

gewanteistet.
Im allgemeinen müssen mindestens 300 kg Zement in 1 m³ fertigen Beton in Bauwerk enthalten sein.
In Hochhauten darf der Zementgehalt für die Bauteile, die dem Einfluß von Feuchtigkeit und Witterung nicht ausgesetzt sind, bei B 160 und B 225 auf 270 kg/m³ herabgesetzt werden. Wird bei diesen Güteklassen die Herstellung von gutem Beton noch besonders dadurch verbürgt, daß die Körnung der Zusähliga zwischen den Linien D und E des Bildes 2 liegt, so darf der Mindestschalt an Zemest bei Mechberten zeitst besche schapen der der Mindest gehalt an Zement bei Hochbauten weiter herabgesetzt werden, und zwar für die Bauteile, die dem Einfluß von Witterung und Feuchtigkeit ausgesetzt sind, auf 270 kg/m³, für die übrigen Bauteile auf 240 kg/m³.

Wegen der Anrechnung von Traß auf den Bindemittelgehalt bei Zugabe uut der Baustelle vgl. z. B. Bestimmungen des Deutschen Ausschusses für Stahl-beton, 7. Aufl., S. 426, Berlin 1960, Wilh. Ernst & Sohn.

Wegen der Verwendung von Transportbeton siehe Beton-Kalender 1963,

**) Wegen der Verwendung von werkgemischtem Beton-Kiessand siehe Beton-Kalender 1963, S. 623 ff.

Ernst & Sohn

Spannbetonbau: Bemessungsnormen in der

BRD ab 1950

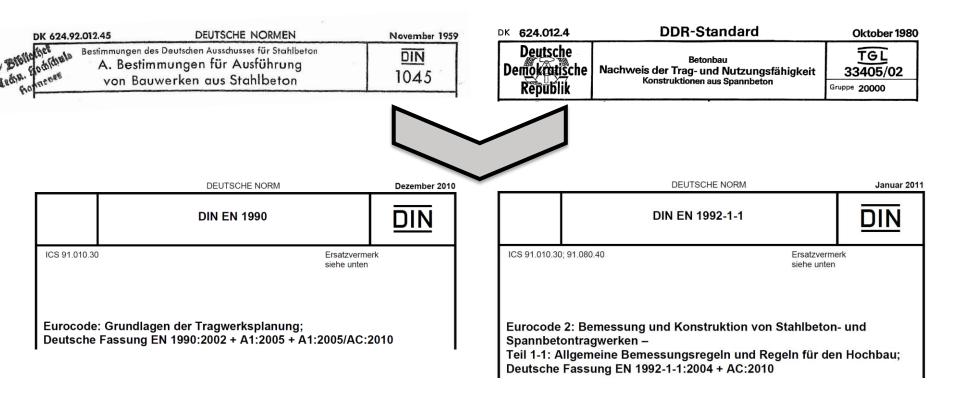
	Zeitraum	Regelwerk	Ausgabe	Kommentar
	1950-1953	Entwurf DIN 4227 - Vorge- spannte Stahlbetonteile – Richtli- nien für die Bemessung	1950-04	Rüsch, H.: Erläuterungen zu den Richtlinien. Entwurf, 1950
	1953-1973	DIN 4227 – Spannbeton – Richtli- nien für Bemessung und Ausfüh- rung	1953-10	Rüsch, H.: Spannbeton-Erläute- rungen zu DIN 4227 Richtlinien für Bemessung und Ausführung. 1954
	1966-1969	Zusätzliche Bestimmungen zu DIN 4227 für Brücken aus Spannbeton	1966-02	-
	1969-1973	Zusätzliche Bestimmungen zu DIN 4227 für Brücken aus Spannbeton	1969-11	-
Hochbau und Brückenbau	1973-1979	Richtlinien für Bemessung und Ausführung von Spannbetonbau- teilen unter Berücksichtigung von DIN 1045 (Ausgabe 1972-01) als vorläufiger Ersatz für DIN 4227 Ausgabe 1953-10)	1973-06	-
lochbau und	1976-1979	Ergänzende Bestimmungen zu den "Richtlinien für Bemessung und Ausführung von Spannbe- tonbauteilen" (Ausgabe 1973-06)	1976-10	-
_	1979-1988	DIN 4227 Teil 1 - Spannbeton – Bauteile aus Normalbeton mit be- schränkter oder voller Vorspan- nung	1979-12	DAfStb Heft 320: Erläuterungen zu DIN 4227 Spannbeton - Aus- gabe Dezember 1979. 1. Auf- lage, 1980
	1985-1988	Richtlinie zur Änderung von DIN 4227 Teil 1 – Spannbeton (Ausgabe 1979-12)	1985-07	-
	1988-2001 Brücken: 1988-2003	DIN 4227 Teil 1 - Spannbeton – Bauteile aus Normalbeton mit be- schränkter oder voller Vorspan- nung	1988-07	DAfStb Heft 320: Erläuterungen zu DIN 4227 Spannbeton. Voll- ständig überarbeitete Neuauf- lage, 1989
	1995	DIN 4227-1/A1 - Spannbeton – Teil 1: Bauteile aus Normalbeton mit beschränkter oder voller Vor- spannung – Änderung A1	1995-12	-

	Zeitraum	Regelwerk	Ausgabe	Kommentar
	1993-2001	DIN V ENV 1992-1-1 – Eurocode 2: Planung von Stahlbeton- und Spannbetontragwerken; Teil 1: Grundlagen und Arwendungsre- geln für den Hochbau	1992-06	DAfStb Richtlinie zur Anwendung von Eurocode 2. Ausgabe April 1993
	2001-2008	DIN 1045-1 – Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 1: Bemessung und Konstruktion	2001-07	DAfStb Heft 525: Erläuterungen zu DIN 1045-1. 1. Auflage, 2003
Hochbau	2008-2011	DIN 1045-1 – Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 1: Bemessung und Konstruktion	2008-08	DAfStb Heft 525: Erläuterungen zu DIN 1045-1. 2. überarbeitete Auflage, 2010
	ab 2011 ^{a)}	DIN EN 1992-1-1 - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbe- tontragwerken – Teil 1-1: Allge- meine Bemessungsregeln und Regeln für den Hochbau	2011-01	DAfStb Heft 600: Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2). 1. Auflage, 2012
		DIN EN 1992-1-1/NA - Nationaler Anhang – National festgelegte Parameter	2013-04	
	2003-2009	DIN-Fachbericht 102 - Betonbrü- cken	2003-03	König, G.; Maurer, R.; et. al.: Leitfaden zum DIN-Fachbericht 102 – Betonbrücken. Ausgabe März 2003.
au	2009-2013	DIN-Fachbericht 102 - Betonbrü- cken	2009-03	-
Brückenbau	ab 2013	DIN EN 1992-2 - Eurocode 2: Be- messung und Konstruktion von Stahlbeton- und Spannbetontrag- werken – Teil 2: Betonbrücken – Bemessungs- und Konstruktions- regeln;	2010-12	-
		DIN EN 1992-2/NA - Nationaler Anhang – National festgelegte Parameter	2013-04	

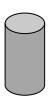
Die verbindliche Einführung des Eurocodes 2, Teil 1-1 und das Zurückziehen von DIN 1045-1 erfolgte im Rahmen von Übergangsregeln in den einzelnen Bundesländern zu unterschiedlichen Zeitpunkten.

13

Spannbetonbau: Bemessungsnormen in der DDR ab 1963 DDR ab 1963 DDR Standard DDR Standard DDR Standard DDR Standard DDR Standard DDR Standard DDR STANN N R R T O N TGL


	Zeitraum	Regelwerk	Ausgabe	Kommentar				
Hochbau und Brückenbau	1963-1980 DDR ^{a)}	TGL 0-4227 – Spannbeton – Be- rechnung und Ausführung	1963-05	Rickenstorf, G.; et al.: Spannbe- ton Berechnung nach Zustand II; Erläuterungen zur TGL 0-4227. 3. Auflage, 1977				
Hochbau und Brückenbau	1980-1990 DDR	TGL 33405/02 – Betonbau – Nachweis der Trag- und Nut- zungsfähigkeit – Konstruktionen aus Spannbeton	1980-10	-				
Brücken- bau	1985-1990 DDR	TGL 42702/01 – Brücken im Ver- kehrsbau - Betonbrücken – Be- rechnung und bauliche Durchbil- dung	1985-04	-				
a) Im	a) Im Zeitraum vor 1963 galt in der ehemaligen DDR die DIN 4227 von 1953.							

K 624.93.012.47	DDR-Standard	Mai 1963
Deutsche	SPANNBETON	TGL
Pemokintische Republik	Berechnung und Ausführung	0-4227 Gruppe 700
керини		
	Zurüdigezegen II. AO ab _/	Verbindlich ab 1.1.1
VORBEMERKUNG	Great db db	· ·
		hei denen unter
Abschnitt 1. g Gebrauchslast	ilt für Spannbetonkonstruktionen keine oder nur begrenzte Zugspan	nungen auftreten.
Abschnitt 2. g	ilt für Spannbetonkonstruktionen	mit vorwiegend
ruhender Belas	tung, bei denen das Aultreten vo	n Rissen mit be-
grenzter Kliwe	ite zulässig ist.	
	57 _ 77.	1_
INHALITSVERZEIC		15
1. Berech	nung nach Zustand I und Ausführu	ing
1.1. Begrif	fe	(5)
1.2. Mitgel	tende Vorschriften	
1.3. Bausto 1.4. Nachwe	is der Güte der Baustoffe	
1.5. Erzeus	ung der Vorsnannung	
1.6. Grunds	atze für die bauliche Durchbildt	ing
1.7. Berech	nungsgrundlagen en und Schwinden	
1.8. Kriech	en und Schwinden Ichslast, ungünstigste Laststelli	ina
1.9. Gebrau 1.10. Rißsic	therung hei woller Vorspannung	****6
1.11. Rißsic	herung bei voller Vorspannung herung bei beschränkter Vorspann	nung
1.13. Haupta	ugspannungen, Schubsicherung, na	aftspannungen
1.14. Knicke	en unter Vorspannung	
1.15. Verani 1.16. Zuläss	rerung der Spannglieder Bige Spannungen	(4
	nung nach Zustand II	
2.1. Begrii 2.2. Erford	ffe lerliche Nachweise	
2.3. Lastfa		
2.4. Kriech	nen und Schwinden	
2.5. Forman	nderungen unter Gebrauchslast	
2.6. Zuläs	sige Spannungen	383 39
	360	
	· · · · · · · · · · · · · · · · · · ·	
	Fortset	zung Seite 2 bis 37
Bearbeiter: Fach	bereich 112, Naturwissenschaftliche	·
	technische Grundlagen des Bauwesens 1963, Amt für Standardisierung, Berl	in


Anwendungsbereich

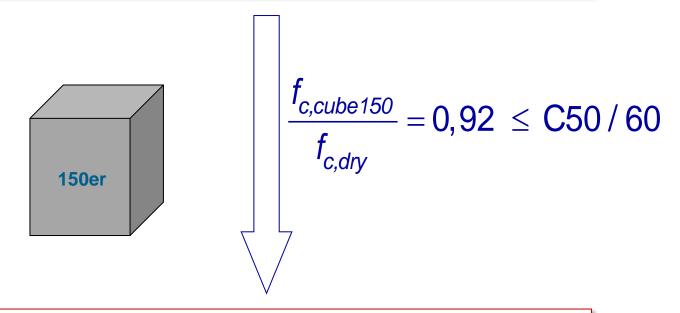


Eurocode 2: Charakteristische Betondruckfestigkeit fck

• zylinderförmige Prüfkörper (150/300)

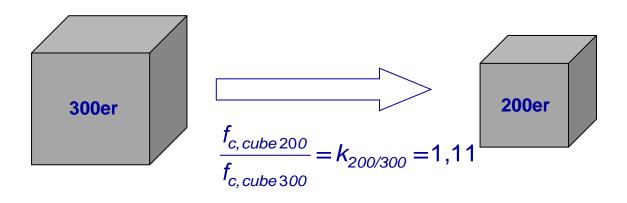
 Referenzlagerung nach DIN EN 12390-2 bis zur Prüfung unter Wasser

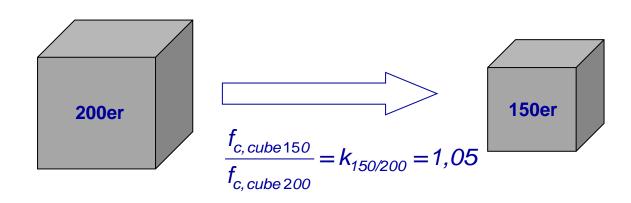
• Druckfestigkeitsprüfung nach 28 Tagen

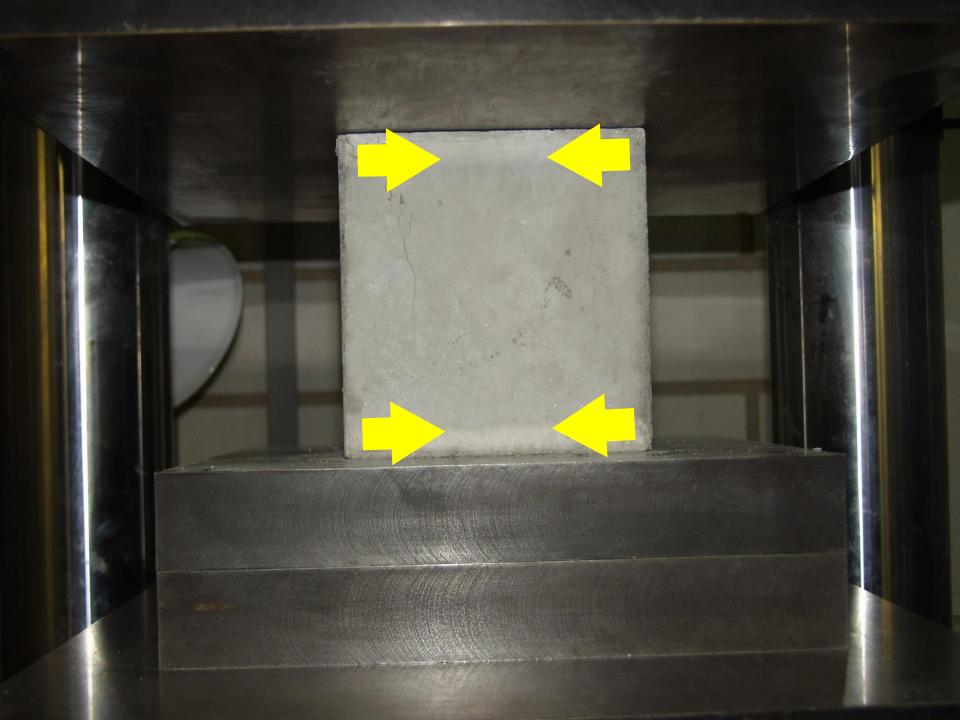

Zeitraum	Referenzform der Probekörpe Ermittlung Betondruckfestigkeiten	Definition Druckfestigke		
1904-1916	Würfelform, Kantenlänge = 30 cm	Defin	ition der Betonfestigkeit —	
1916-1925	Würfelform, Kantenlänge = 20 cm	mit3027	ttlere Druckfestigkeit 0er / 200er Würfel Tage, "trocken" gelagert	
1925- 1972	Würfelform, Kantenlänge = 20 cm	• Бе	tongüten ab 1943	
1972-1988	Würfelform, Kantenlänge = 20 cm	• 5%	ition der Betonklassen 5-Quantile der Grundgesamtheit 0er Würfel	
1988-2001	Würfelform, Kantenlänge = 20 cm		Tage nass (europäisch) Tage "trocken" gelagert (D)	
ab 2001	Zylinderform, Durchmesser/Höhe = 15/30		ition der Betonklassen -Quantile der Grundgesamtheit Oer Zylinder	
		• 27	Tage nass	

Umrechnungsfaktoren: Lagerungsfaktor k_L

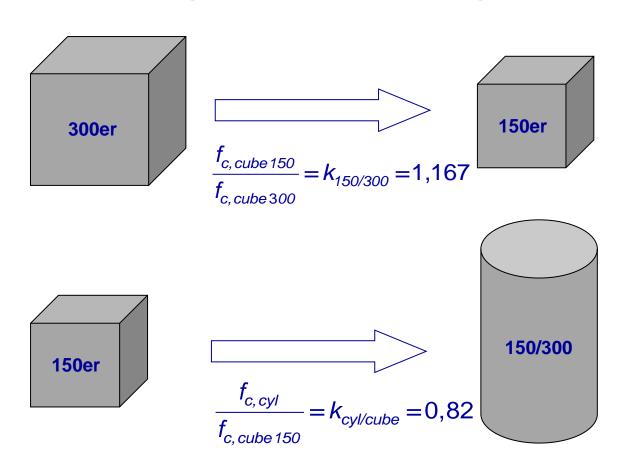
"Trockenlagerung": 7 Tage feucht, 21 Tage trocken



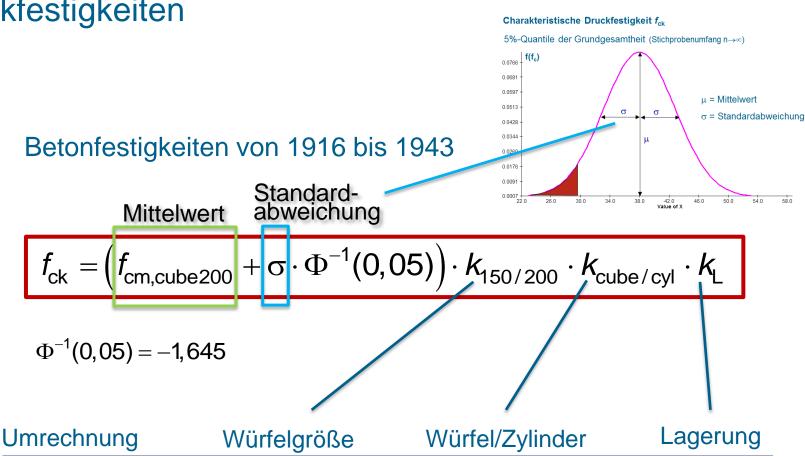

Referenzlagerung 28 Tage feucht



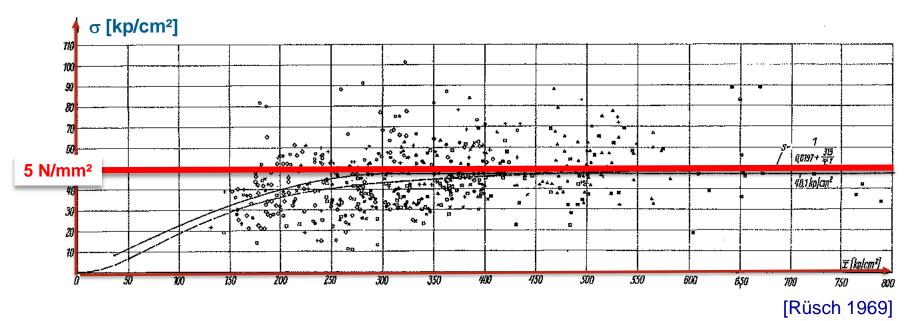
Umrechnungsfaktoren Probekörpergeometrie



Umrechnungsfaktoren Probekörpergeometrie



Umrechnung mittlerer Druckfestigkeiten in charakteristische Druckfestigkeiten


Charakteristische Druckfestigkeit fick

Streuungsverhalten der Betondruckfestigkeit auf Baustellen der 1950er Jahre

 $f_{\rm cm}$ (200er Würfel) [kp/cm²]

Güteüberwachte Betone von 1943 bis 1972

Zu erfüllende Güteanforderungen während der Bauausführung:

Mittelwert aus einer Serie von drei Würfeln ≥ geforderter Mittelwert und

jeder Einzelwert ≥ 0,85-geforderter Mittelwert.

5 % - Quantilwert entspricht 0,85 x Mittelwert

[BAUINGENIEUR 12/2010]

$$f_{\rm ck} = (0.85 \cdot f_{\rm cm, cube 200}) \cdot k_{150/200} \cdot k_{\rm cube/cyl} \cdot k_{\rm L}$$

Betonfestigkeiten von 1972 bis 2001

$$eta_{ ext{WN}} = f_{ ext{ck,cube}200}$$
 $f_{ ext{ck}} = f_{ ext{ck,cube}200} \cdot \mathbf{k}_{150/200} \cdot \mathbf{k}_{ ext{cube}/ ext{cyl}} \cdot \mathbf{k}_{ ext{L}}$

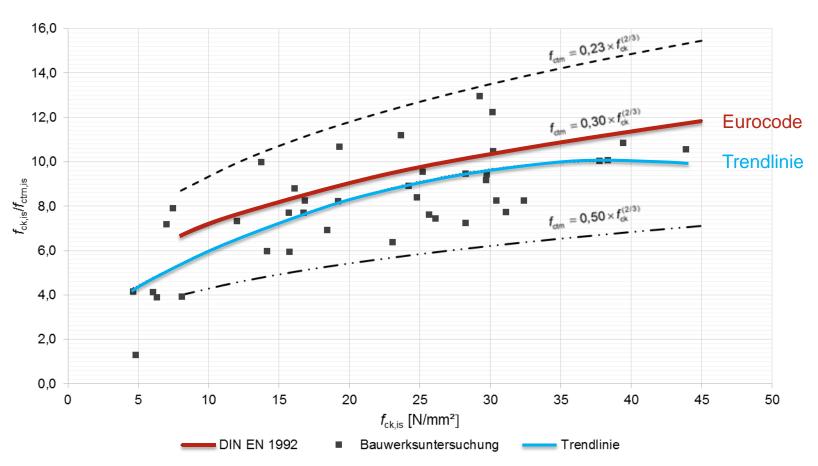
• β_{WN} als 5%-Quantile der Grundgesamtheit festgelegt

Betonfestigkeiten von 1980 bis 1990 nach TGL 33411-01:1979

$$f_{
m ck} = f_{
m ck,cube150} \cdot k_{
m cube/cyl} \cdot k_{
m L}$$

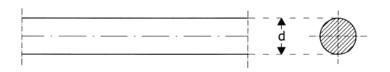
Betondruckfestigkeiten ab 1916

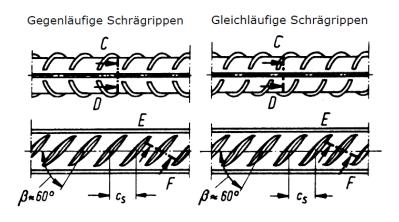
	Würfelkanten- länge [mm]					Ве	zeichnu	ung				
Zeitraum	M: Mittelwert aus 3 Proben; 5-%- Quantilwert		Nennwert der Betondruckfestigkeit ^{a)} geprüft am Würfel eordnete charakteristische Zylinderdruckfestigkeit fek [N/mm²] Wb28									
	zuç	geordne	ete cha	rakteris	tische Z	Zylinde	rdruckf	estigke	it <i>f</i> ck [N/	mm²]	9	
1916-1925	200		W _{b28}	W _{b28}								
DAfEb	M [kg/cm²]	_	150	180						10		
	f _{ck} [N/mm²]		8	9,5								
1925-1932	200	W _{b28}	W _{b28}	W _{b28}				•				
DIN	M [kg/cm²]	100	130	180				.0				
	f _{ck} [N/mm²]	5	7	10				1				
1932-1943	200		W _{b28}	W _{b28}	W _{b28}		· O					
DIN	M [kg/cm²]		120	160	210							
	f _{ck} [N/mm²]		6,5	8,5	12	6						
1943-1972	200		В	В	1	7	N	В		B _b)		B _b)
DIN	M [kp/cm²]		120	160		225		300		450		600
(TGL bis 1980)	f _{ck} [N/mm²]		6,5	17		15		20		30		40
1972-1978	200	Bn		Bn	Bn	V		Bn	Bn		Bn	Bn
DIN	5 % [kp/cm²]	50		1/0	160	•		250	350		450	550
[kp/cm ²]	f _{ck} [N/mm²]	4		.3	2			20	27,5		35,5	43,5
1980-1990	150	FR	Bk	3k	Bk	Bk	Bk		Bk	Bk	Bk	Bk
TGL	5 % [N/mm²]	0	7,5	0	15	20	25	1	35	45	50	55
	f _{ck} [N/mm ²]	4	5,5	7,5	11,5	15	19		26,5	34	38	41,5
1978-2001	200	В		В	В			В	В		В	В
DIN	5.// ₆ [N/µm²]	5		10	15			25	35		45	55
c)	f _{ck} [N/mm²]	4		7,5	12			20	27,5	1	35,5	43,5
ab 2001	150			C8/	C12/		C16/	C20/	C25/	C30/	C35/	C40/
DIN	5 % [N/mm²]			10	15		20	25	30	37	45	50
DII EN	f _{ok} [N/mm²]			8	12		16	20	25	30	35	40
a) Finheiten: 100 kg/cm² = 100 kp/cm² = 10 N/mm² b) DIN 4225:1944: Fertigbauteile aus Stahlbeton [6]												



Die charakteristische Betondruckfestigkeit fek für hochfeste Betone nach DAfStb-Richtlinie für hochfesten Beton 1995-08 sind für die Festigkeitsklassen B65 bis B115 entsprechend Tabelle 2 anzunehmen.

Korrelation zwischen Betondruck- und Zugfestigkeit historischer Betone



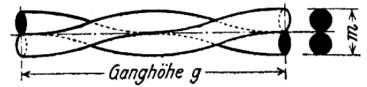

Betonstahl – Streckgrenze und Duktilität

Bezeichnung	Stahlsorte	Verwendungs- zeitraum	f _{yk} [N/mm²]	Duktilitäts - klasse	
	Schweißeisen	vor 1923	180 ^{a) b)}	-	
Glatte Rundstähle	Flusseisen (Bauwerks-; Handelseisen)	vor 1925	220 ^{a) b)}		
(DIN 1000, DIN 1612, DIN 488)	Flussstahl (St 37, St 37.12, St 00.12)	1925-1943	220 7 7	В	
	Betonstahlgruppe I	1943-1972	220 ^{b)}		
	BSt 220/340 GU	1972-1984	220		
	hochwertiger Baustahl St 48	1925-1932	290 ^{a) b)}		
Glatte Rundstähle (DIN 1000, DIN 1612, DIN 488)	hochwertiger Beton- und Baustahl St 52	1932-1943	340 ^{b) c)}	В	
	Betonstahlgruppe IIa	1943-1972			
Glatte Rundstähle	St A-0 Betonstahl I	1965-1985	1965-1985 220 ^{b)}		
(TGL: 101-054, TGL 12530, TGL 33403)	St A-I Betonstahl I	1965-1990 240 ^b		В	
12000, 102 00 100)	St B-IV / St B-IV S	1972-1990	490 ^{b)}	-	
	BSt 420/500 RU (III)	1972-1984	1072 1094		
	BSt 420/500 RK (III)	1072 1001	420	Α	
	BSt 420 S (III)		420	В	
Betonrippenstähle	BSt 420 S (III) verwunden	1984-2009		Α	
(DIN 488)	BSt 500 S (IV)	1304-2009		В	
	BSt 500 S (IV) verwunden		500	Α	
	B500A	seit 2009	300	_ ^	
	B500B	3011 2003		В	

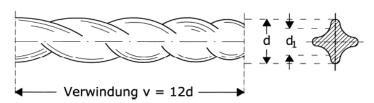
Glatter Rundstahl

BST 420/500 RU

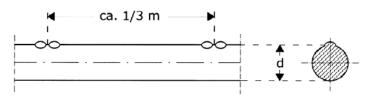
Quelle: Bindseil - 2002


Betonstahl – Streckgrenze und Duktilität

	BSt 500/550 RK (IV)			Α
	BSt 500/550 RUS / RTS	1976-1984		В
GEWI-Stahl ^{e)}	BSt 420/500 RU (III)	seit 1974	420	В
GEWI-Stalli	BSt 500 S (IV)	seit 1984	500	Ь
Isteg-Stahl ^{e)}	min. St 37 verwunden (kaltverfestigt)	1933-1942	340 ^{b) c)}	-
Drillwulst-Stahl ^{e)}	St 52	1937-1943	340 ^{b) c)}	В
Dilliwuist-Starii	Betonstahlgruppe IIIa (naturhart)	1943-1956	340 / /	В
Nocken-Stahl ^{e)}	St 52	1937-1943	340 ^{b) c)}	В
	Betonstahlgruppe IIIa (naturhart)	1943-1954	400 ^{b) d)}	D
Nocken-Stahl ^{e)}	Betonstahlgruppe IVa (naturhart)	1943-1956	500 ^{b)}	В
	Torstahl 36/15	1938-1943	360 ^{b)}	
Torstahl ^{e)}	Torstahl 40/10	1936-1943	400 ^{b)}	-
	Betonstahlgruppe IIIb (kaltgereckt)	1943-1959	400 ^{b) d)}	Α
Stahl Becker KG ^{e)}	Betonstahlgruppe IIIa (naturhart)	1964-1969	400 ^{b) d)}	В
Betonformstahl vom	BSt 500 WR (IV)	seit 1984	seit 1984 500	
Ring ^{e)}	BSt 500 KR (IV)	3011 100-7	300	Α
Betonstahl in Ringen	BSt 500 WR mit Sonderrippung	seit 1991	500	Α


Erhöhung des Teilsicherheitsbeiwertes γ_s um 10 % (vor 1943)

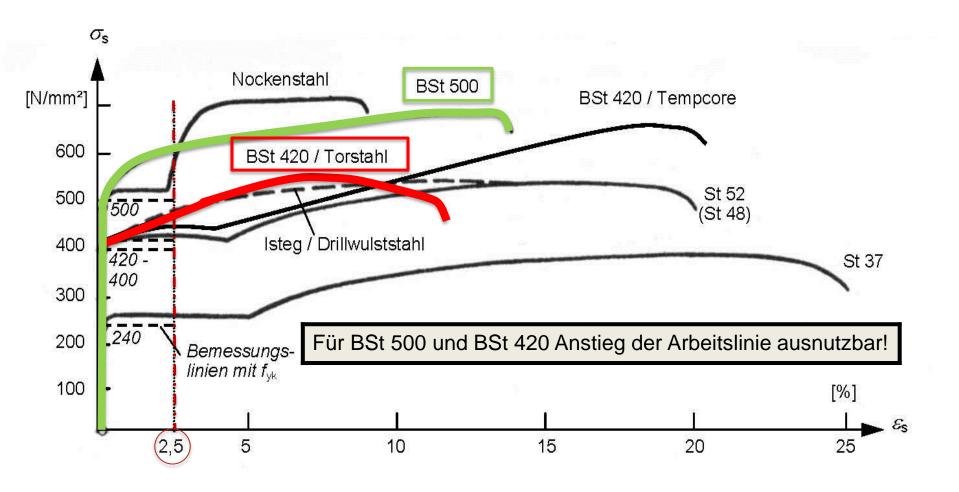
- Bei glatten Betonstählen und Betonformstählen ist deren von DIN EN 1992 abweichendes Verbundverhalten zu berücksichtigen
- Erhöhung auf 360 N/mm² bei Stabdurchmesser ≤ 18 mm
- i) Erhöhung auf 420 N/mm² bei Stabdurchmesser ≤ 18 mm
- nach Zulassung


Isteg-Stahl

Drillwulst-Stahl

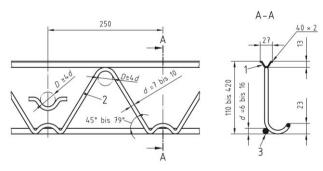
Nocken-Stahl

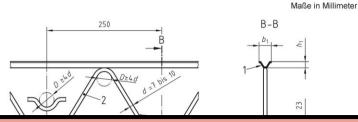
Torstahl



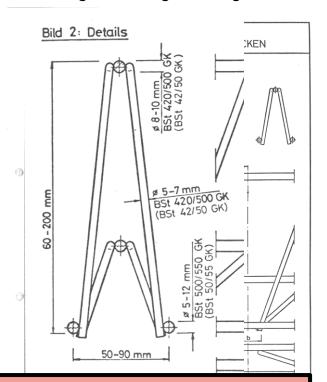
Quelle: Bindseil - 2002

Spannungs-Dehnungs-Linie Betonstahl




Gitterträger

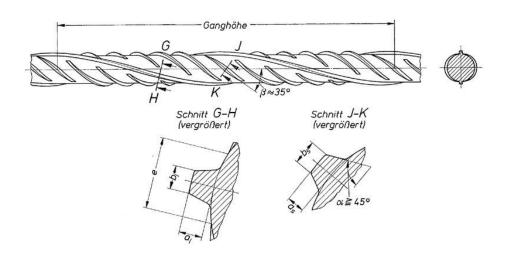
S-Gitterträger mit Obergurt aus profiliertem Stahlband - DIN 488-5:2009

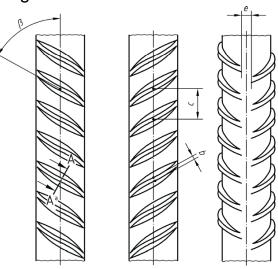


- Diagonale Untergurt

Zulassung Gitterträger – Filigran - 1978

Untergurt, Diagonalen und Obergurt können aus verschiedenen Stahlsorten bestehen. Stahlsortenbezeichnung älterer Gitterträger aus Zulassungen (www.irb.fraunhofer.de)

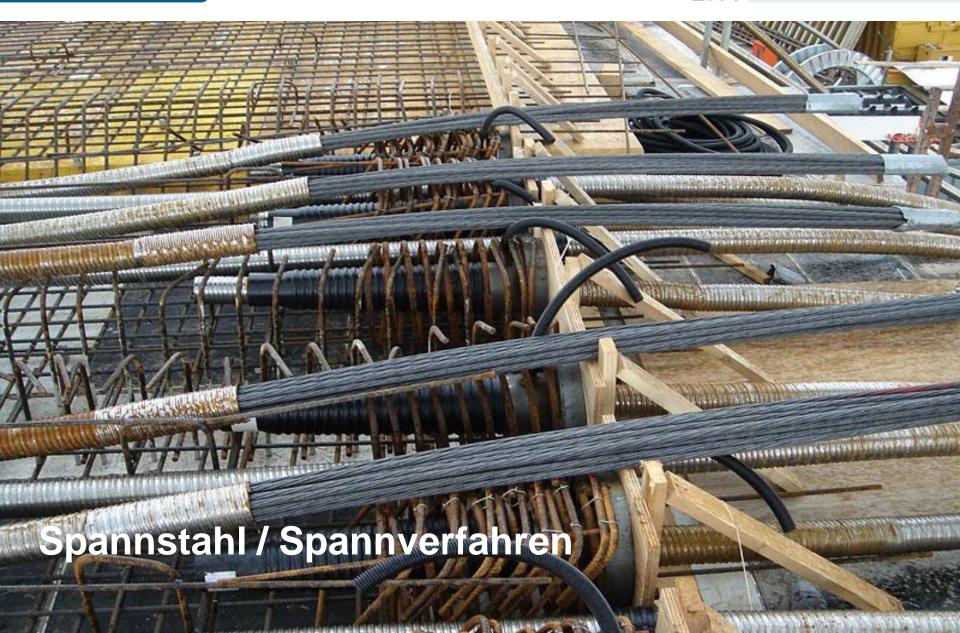

- Obergurt
- 2 Diagonale3 Untergurt



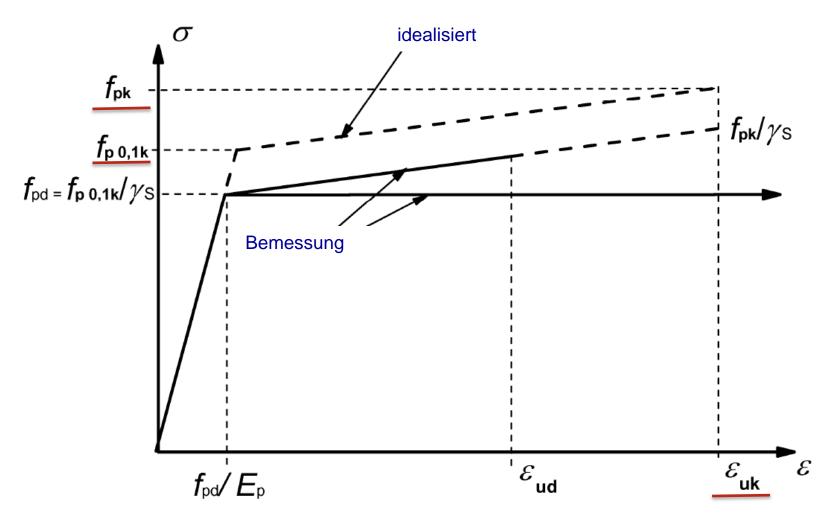
Bezogene Rippenfläche

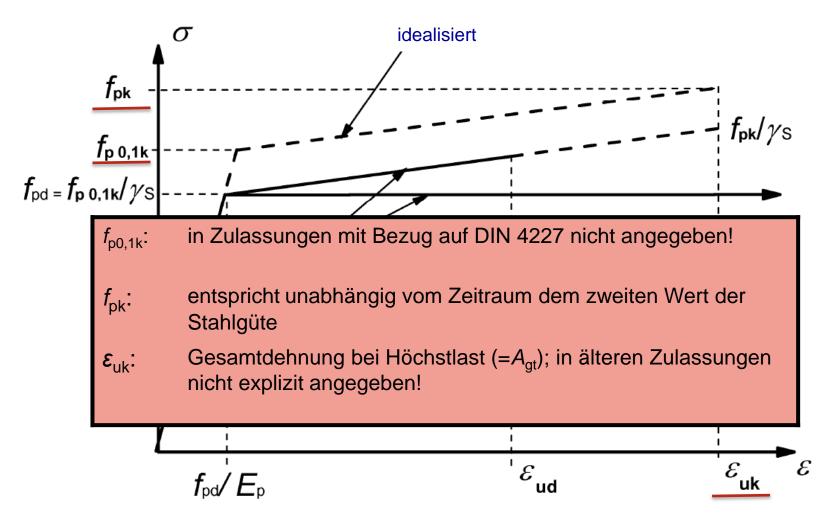
Betonrippenstahl BSt 42/50 RK – DIN 488-2:1972

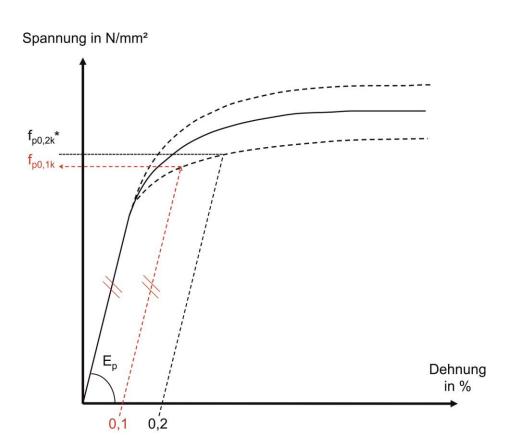
B500B; 2 Reihen Schrägrippen; ohne Längseisen – DIN 488-2:2009


Bezogene Rippenfläche f_r für derzeit verwendete Betonstähle in DIN 488:2009 geregelt. In DIN 488:1972 geregelte Betonstähle, haben eine um ca. 15% höhere bezogene Rippenfläche

- → Beeinflussung der Verbundfestigkeit
- → tabellarische Auflistung im Sachstandbericht




Spannstahl – DIN EN 1992-1-1


Spannstahl – DIN EN 1992-1-1

Graphische Ermittlung der 0,1 %-Dehngrenze

^{*} f_{p0.2k} ist in allen Spannstahlzulassungen angegeben.

Falls in der Zulassung für den Bereich plastischer Spannstahldehnungen ein Streubereich möglicher Spannungs-Dehnungs-Linien angegeben ist, sind die charakteristischen Werte an der unteren Kurve abzulesen.

Spannungsverluste infolge Relaxation für Spannstähle aus dem Zeitraum vor 1973

Art des Spann- stahls	Anfangsspannung <i>R</i> i	Zeitspanne nach dem Vorspannen	$\Delta\sigma_{pr}$
naturhart	≤ σ _{Kr} bzw. β _{Kr}	<i>t</i> = ∞	2 %
kaltverformt (ge-		$(t \ge 10^6 h)$	
zogen) und an-			
gelassen			
vergütet			
kaltverformt (ge-	≤ σ _{Kr} bzw. β _{Kr}	<i>t</i> = ∞	5 %
zogen) und nicht		$(t \ge 10^6 h)$	
angelassen			
alle Stähle	≥ σκr bzw. βκr	<i>t</i> = ∞	Beurteilung im Einzelfall
		$(t \ge 10^6 h)$	

Spannstahlzulassungen

	1	2	3	4	5	6	7	8	9	10	11	12
	Art	Stahl- güte St	Handels- bezeich- nung	Querschnitte	Streck- grenze β _s bzw. β _{0,2}	Zug- festig- keit βz	Elastizi- täts- grenze β _{0,01}	Elastizi- tätsmodul <i>E</i> ₅	Bruch- deh- nung δ ₁₀ ^{a)}	Kriech- grenze	Hersteller	Zulas- sungs- nummer
	-	-	-	mm (Ø) bzw. mm² (A)	kg/mm²	kg/mm²	kg/mm²	kg/mm²	%	kg/mm²	-	-
1	warmge- walzt	55/85	Sigma- Spann- stahl	rund; Ø10,0-20,0	55	85	50	2,10·10⁴	10	50	Hüttenwerk Rheinhausen	II A 4 – 2.43 Nr. 2153/56
2				ericht								
3	warmige- walzt	08 C 70/105 Spa	asig4U Spann- anns	0 in dei tähle ei	r BR insc	D u hlie	nd de ßlich	r DDI 2,10.10 ⁴ der w	₹ zu ⁄icht	gela liast	Ssene eninhausen	II A 4 – 2.43 Nr. 2153/56
4	vergütet	125/140	Sigma-	laterial							Hüttenwerk Rheinhausen	II A 4 – 2.43 Nr. 2151/56
5	vergütet	135/150	Sigma- Spann- stahl	rund; Ø7,0-9,5	135	150	110	2,05⋅10⁴	6	100	Hüttenwerk Rheinhausen	II A 4 – 2.43 Nr. 2151/56
6	vergütet	145/160 °)	Sigma- Spann- stahl	rund; Ø5,2-6,0	145	160	120	2,05⋅10⁴	6	110	Hüttenwerk Rheinhausen	II A 4 – 2.43 Nr. 2151/56

Quelle: DAfStb-Sachstandbericht

Teilübersicht der 1960-2019 in der BRD und DDR zugelassenen Spannverfahren

	1	2	3 4		5	6	7
	Antragsteller (Firma,	Gegenstand (Spannverfahren)	Gültigkeit		Zulassungsnummer	Art a)	Zulassungsstelle b)
	Zulassungsinhaber)	Gegenstand (Spannvertainen)	von	bis	Zulussungshummer	AIL 1	Zulussuligsstelle /
1	B + B Vorspanntechnik GmbH	Litzenspannverfahren Bilfinger + Berger	31.01.1979	31.01.1984	Z-13.1-31	Z	DIBt
2	B + B Vorspanntechnik GmbH	Litzenspannverfahren Bilfinger + Berger (B + B L 1 bis 11)	31.01.1984	31.01.1989	Z-13.1-31	Z	DIBt
3	B + B Vorspanntechnik GmbH	Spannverfahren 'Bilfinger + Berger'	01.12.1981	30.11.1986	Z-13.1-30	Z	DIBt
4	BBR Systems Ltd	Spannverfahren CONA für die Anwendung nach DIN 1045-1 und DIN-Fachbericht 102	27.02.2004	28.02.2009	Z-13.1-108	Z	DIBt
5	BBR Systems Ltd	Spannverfahren CONA-Single Litzenspannglied ohne Verbund	25.01.2002	31.03.2005	Z-13.2-46	Z	DIBt
ln	Sachstand	lbericht ca. 400 ba	uaufs	sichtl	ich/baur	ooli	zeilich

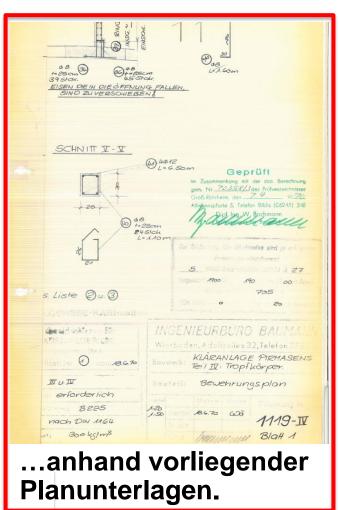
		bis 31 Litzen nach ETA-06/0147					
7	BBR VT Internat ZUG	elassene Spannve	rfahre	en au	fgeliste	Z	DIBt
8	BBR VT International Ltd	Anwendungsregeln für das BBR VT CONA CMM - Spannverfahren ohne Verbund mit 1, 2 und 4 Litzen nach ETA-06/0165	05.11.2007	30.11.2012	Z-13.72-60165	Z	DIBt
9	BBR VT International Ltd	BBR VT CONA CMI - Spannverfahren im Verbund mit 4 bis 31 Litzen. Litzen-Spannverfahren, intern, im Verbund, für das Vorspannen von Tragwerken	25.08.2006	24.08.2011	ETA-06/0147	Z	OIB
10	BBR VT International Ltd	BBR VT CONA CMI - Spannverfahren im Verbund mit 1, 2 und 4 Litzen. Litzen-Spannverfahren, intern, im Verbund, für das Vorspannen von Tragwerken	15.11.2006	14.11.2011	ETA-06/0165	Z	OIB
11	BBR VT International Ltd	Litzenspannverfahren VT-CMM D für externe Vorspannung	14.07.2014	01.09.2017	Z-13.3-78	Z	DIBt

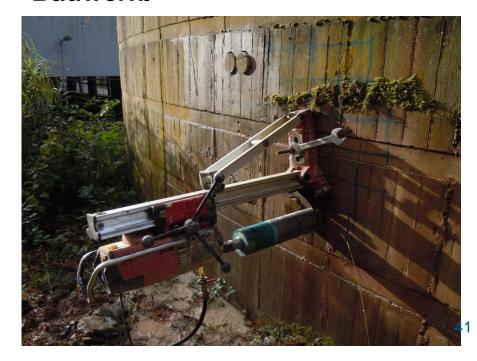
a) Z = Zulassung, E = Ergänzung, Ä= Änderung, V = Verlängerung

b) DIBt = Deutsches Institut für Bautechnik (vor 1993 Institut für Bautechnik), ITB = Instytut Techniki Budowlanej (Polnisches Institut für Bautechnik), OIB = Österreichisches Institut für Bautechnik

Darf vorhandenen Plandokumenten vertraut werden?

Nachrechnungsrichtlinie Brücken:


Bei bis 1953 errichteten Tragwerken nur zur überschlägigen Bemessung


DAfStb Sachstandsbericht

Teil I

Teil II

...durch Untersuchungen am Bauwerk.

DIN EN 13791

- Bewertung der Betondruckfestigkeit bei Zweifeln an der nach DIN EN 206-1 produzierten Betonqualität (nicht bestandene Konformitätsbzw. Annahmeprüfungen)
- Gezielte Konformitätskontrolle im Rahmen der Produktion von Fertigteilen
- Ermittlung der charakteristischen Betonfestigkeit zur Nachrechnung von Bestandstragwerken beim Bauen im Bestand
- Kein Ersatz für die Prüfung des Betons nach FN 206-1

ICS 91.080.40

Bewertung der Druckfestigkeit von Beton in Bauwerken oder in Bauwerksteilen:

Deutsche Fassung EN 13791:2007

Assessment of in-situ compressive strength in structures and precast concrete components;

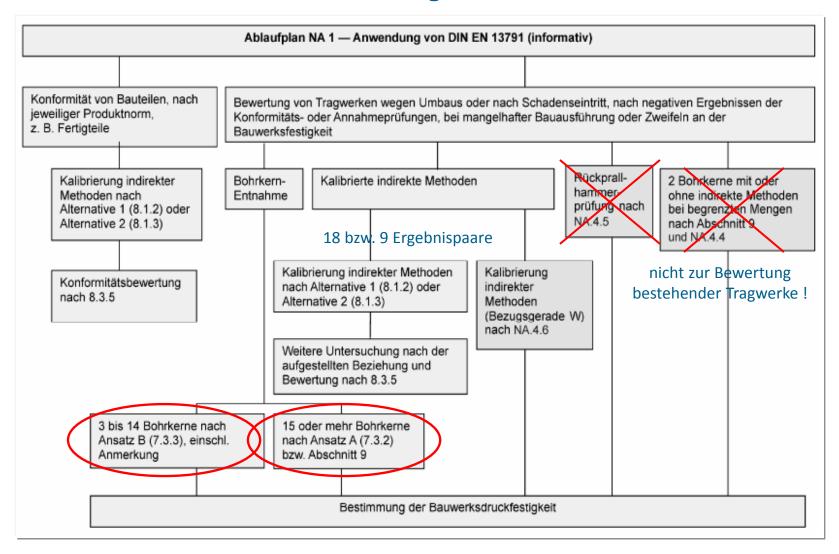
German version EN 13791:2007

Evaluation de la résistance à la compression sur site des structures et des éléments préfabriqués en béton;

Version allemande EN 13791:2007

Gesamtumfang 38 Seiter

Normenausschuss Bauwesen (NABau) im DIN



Charakteristische Betondruckfestigkeit nach DIN EN 13791:2008

Ermittlung der Betondruckfestigkeit am Bauwerk

Vergleich unterschiedlicher Auswerteverfahren

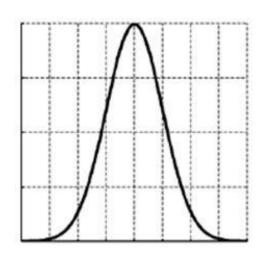
Nach DIN	EN 13791	"Allgemeine Statistik"			
Ansatz A	Ansatz B	"Klassische Statistik"	Bayes'sches Verfahren		
Minimum r	maßgebend	(DIN ISO 16269-6)	(DIN EN 1990)		
(1) $f_{ck,is} = f_{m(n),is} - k_2 \cdot s$ (2) $f_{ck,is} = f_{is,niedrigst} + 4$	(1) $f_{ck,is} = f_{m(n),is} - k$ (2) $f_{ck,is} = f_{is,niedrigst} + 4$	$x_L = \overline{x} - k_3 \cdot s_x$	$x_k = \overline{x} - k_n \cdot s_x$		

Ergebnisse

Einzelwerte der Bohrkernprüfung in [N/mm²]

45,46	49,30	38,52	38,63	33,29	49,57	24,47	49,52	47,18	48,21	38,71
38,60	42,60	51,39	49,53	48,47	47,23	38,83	50,25	52,67	41,70	51,11
41,84	43,60	32,78	42,11	30,96	51,89	56,52				

Unter Annahme einer Normalverteilung:


Stichprobenumfang n: 29

Mittelwert m: 43,97 N/mm²

Standardabweichung σ: 7,48 N/mm²

Variationskoeffizient v: 0,170

5 %-Quantil $f_{ck,is}$: 31,28 N/mm²

Statistische Simulation TU KL

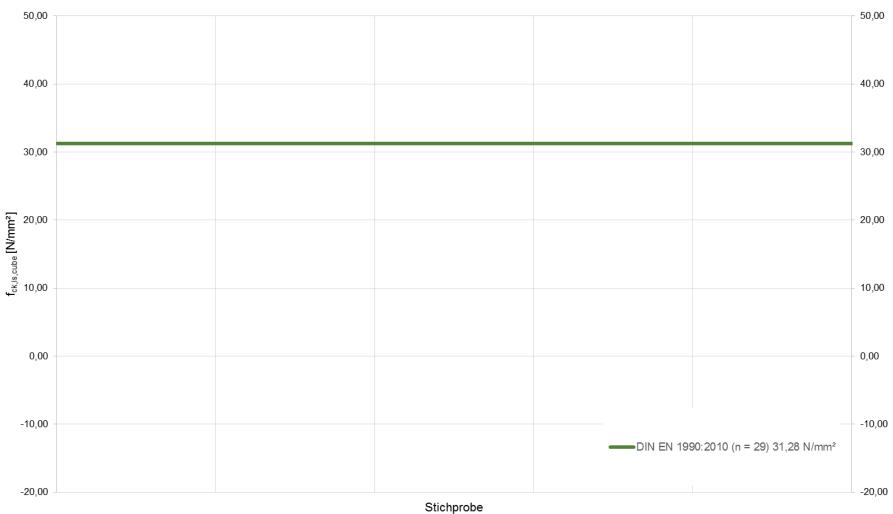
Bildung aller möglichen Kombinationen von 3; 5; 8 Bohrkernen aus der Gesamtstichprobe – keine Doppelnennung möglich!

$$n = 3$$

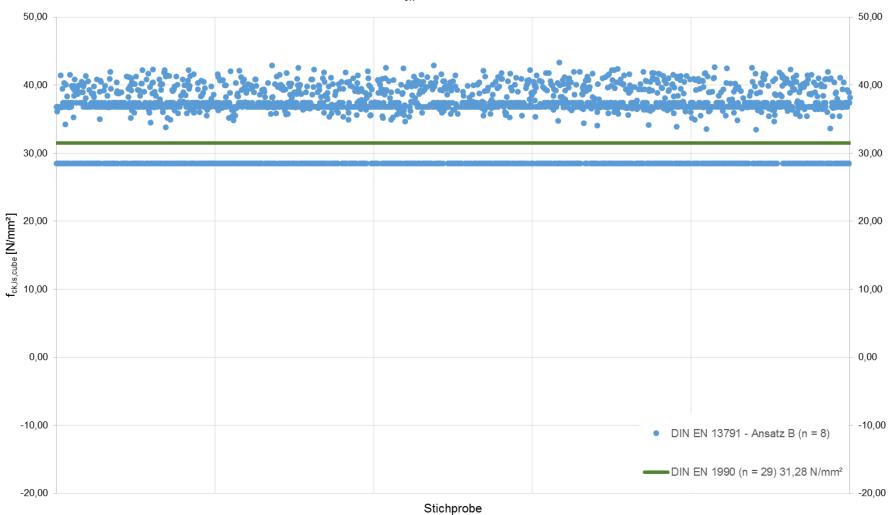
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{29!}{3!(29-3)!} = 3654$$

$$n = 5$$

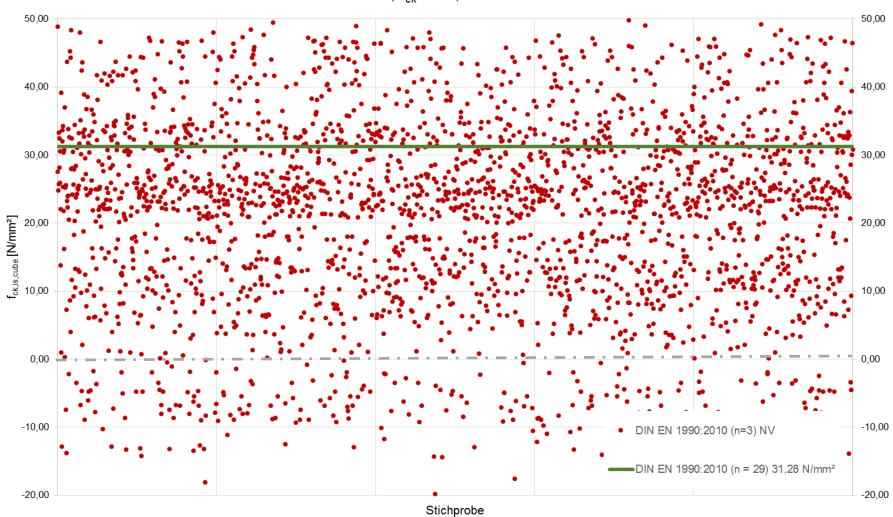
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{29!}{5!(29-5)!} = 118755$$


- n = 8

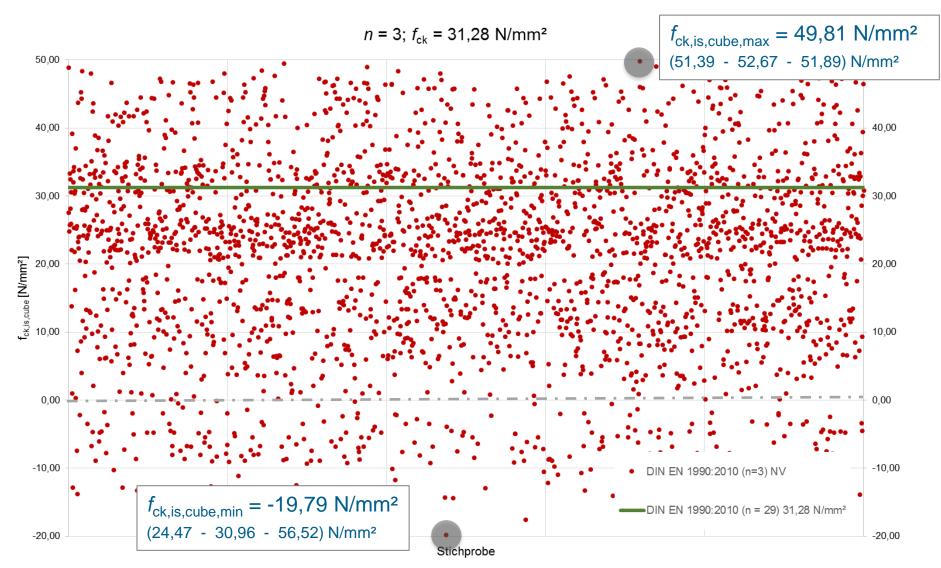
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{29!}{8!(29-8)!} = 4292145$$

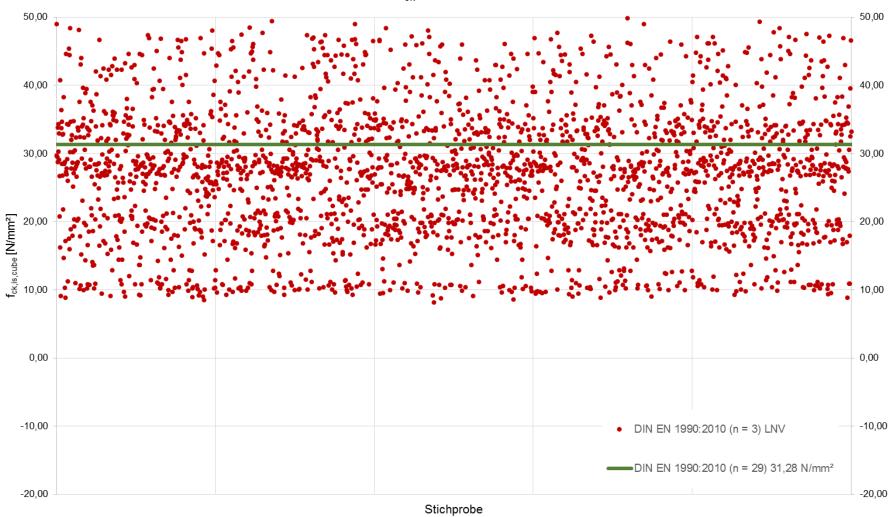


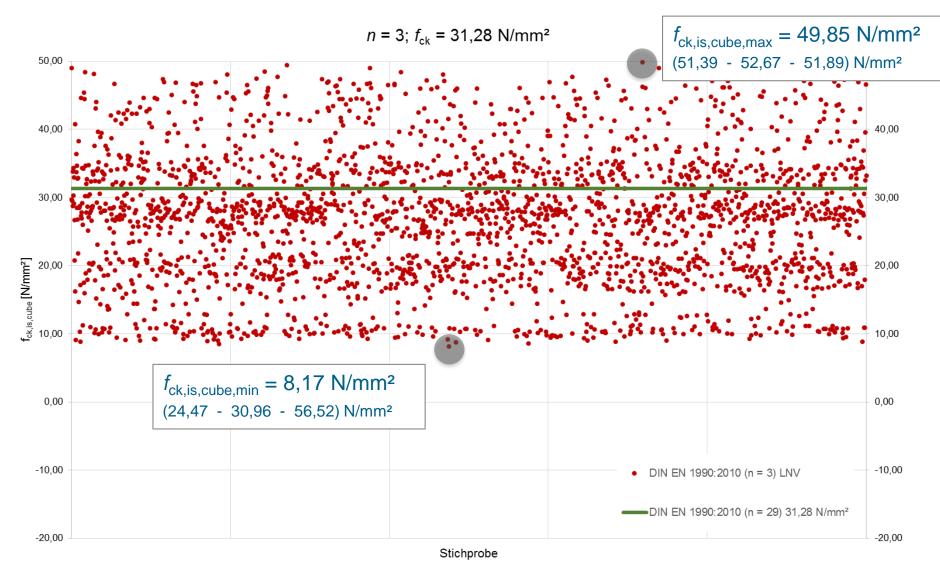
Ermittlung der Betondruckfestigkeit am Bauwerk

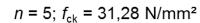

Vergleich unterschiedlicher Auswerteverfahren

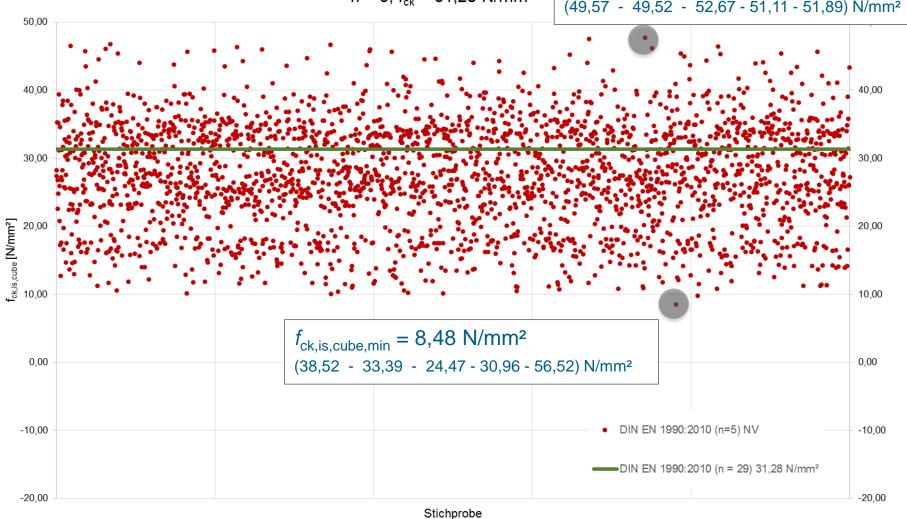
Nach DIN	EN 13791	"Allgemeine Statistik"			
Ansatz A	Ansatz B	"Klassische Statistik"	Bayes'sches Verfahren		
Minimum r	naßgebend	(DIN ISO 16269-6)	, (DIN EN 1990)		
(1) $f_{ck,is} = f_{m(n),is} - k_2 \cdot s$ (2) $f_{ck,is} = f_{is,niedrigst} + 4$	(1) $f_{ck,is} = f_{m(n),is} - k$ (2) $f_{ck,is} = f_{is,niedrigst} + 4$	$x_L = \overline{x} - k_3 \cdot s_x$	$x_k = \overline{x} - k_n \cdot s_x$		

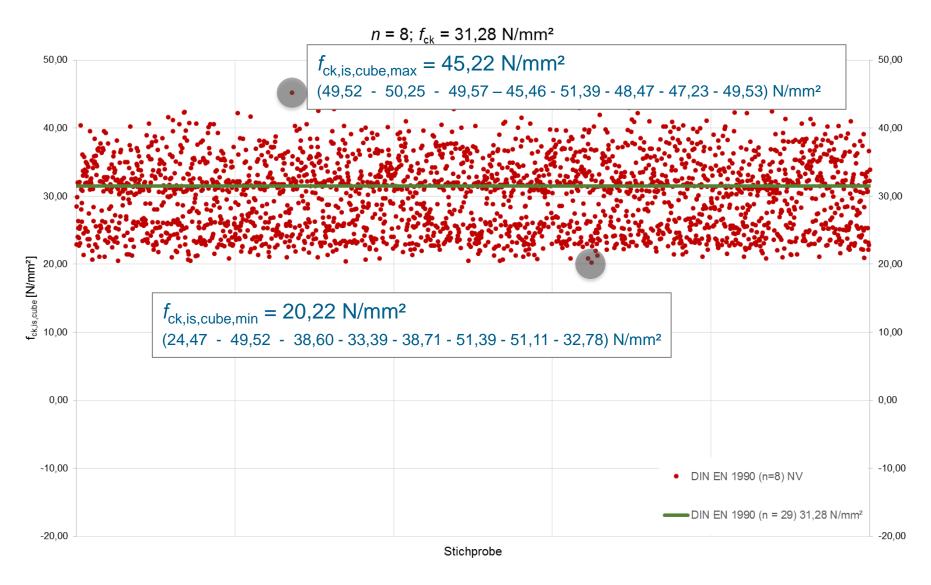




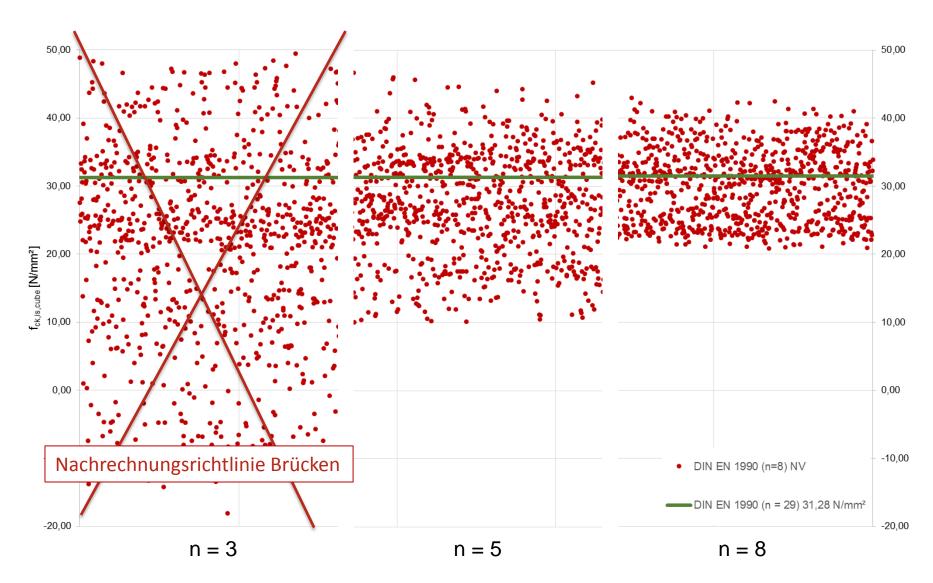








 $f_{\text{ck,is,cube,max}} = 47,69 \text{ N/mm}^2$ (49,57 - 49,52 - 52,67 - 51,11 - 51,89) N/mm²



EN 13791:2015 - Draft 16

The in-situ compressive strength values ($f_{c, is}$) are checked to ensure that all values are valid. All valid results are used to calculate the mean in-situ compressive strength ($f_{c,m(n)is}$) and the sample standard deviation, s_s , of the test region under investigation. When applying equation [5], the sample standard deviation shall not be less than 3.0 N/mm^2 .

The characteristic in-situ compressive strength ($f_{c,is,ck}$) is calculated from the lower of:

$$f_{c,is,ck} = f_{c,m(n)is} - k_n s_s$$
 [5]

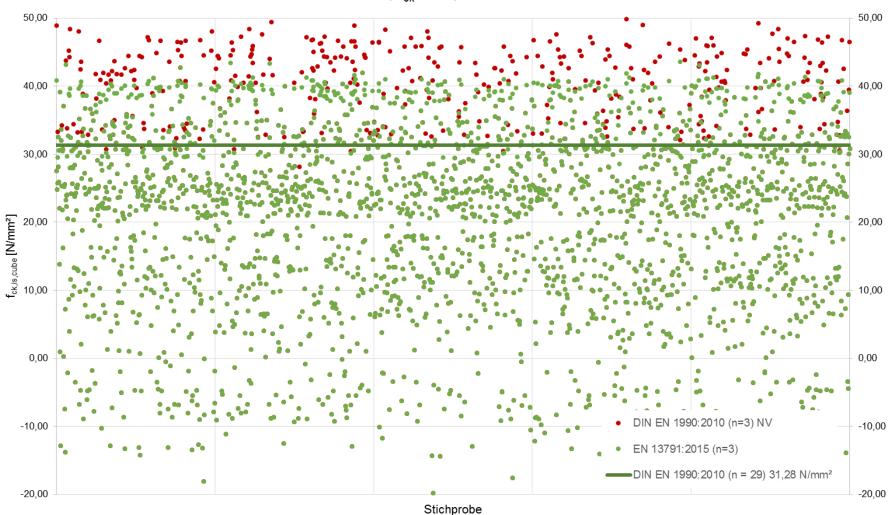
where k_n is taken from Table 4, or,

$$f_{\text{c.is.ck}} = f_{\text{c.is.lowest}} + 4$$
 [6]

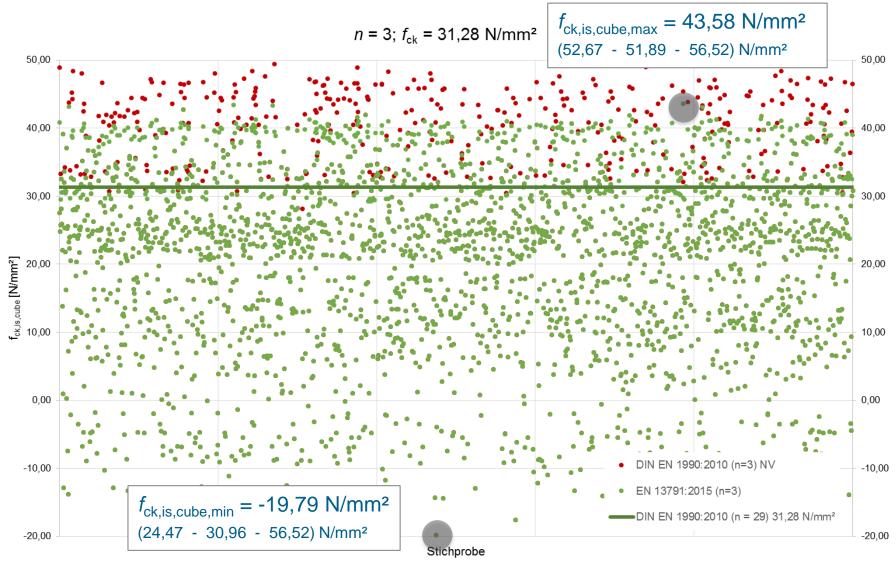
provided the compressive strength class is C20/25 or higher.

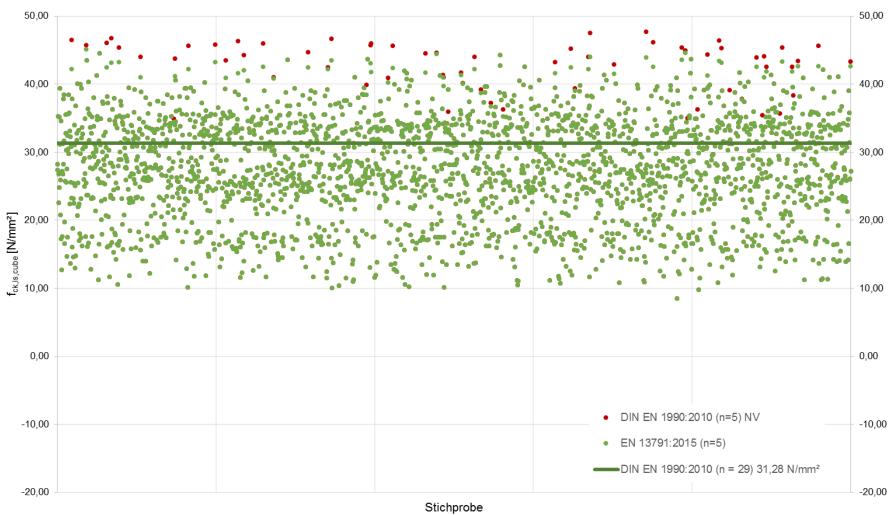
NOTE 1: For C16/20, C12/15 and C8/10 the margin should be reduced from 4 to 3, 2 and 1 respectively.

Table 4: k _n values for use in Equation [5]									
<i>n</i> 3 4 5 6 8 10 20 30 ∞								8	
k _n	3,37	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64


NOTE 2: Equation [5] and Table 4 align with EN 1990: 2002, Annex D [2].

NOTE 3: See Annex A for guidance on selecting appropriate values of characteristic strength to be used in a structural assessment.





BAUINGENIEURWESEN

