Accelerated Corrosion of Steel Reinforcement in Concrete: Experimental tests & 3D FE Analysis

E. Sola, J. Ožbolt & G. Balabanić

Institute of Construction Materials (IWB), University of Stuttgart, Germany

Supported by National Science Foundation of Germany (DFG, AOBJ: 612266)

1

Outline

- Introduction & motivation
- Coupled 3D chemo-hygro-thermo-mechanical model for concrete
- Modeling of processes after depassivation of steel
- Experimental tests accelerated corrosion
 - Corrosion induced damage
 - "Transport" of corrosion products
- Numerical analysis
 - Callibration of the model
 - Accelerated vs. natural corrosion
- Summary and conclusions

Introduction & motivation

- Corrosion of reinforcement significantly influence durability of reinforced concrete (RC) structures
- Reason for corrosion: electro-chemical reaction of steel due to carbonation of concrete or due to influence of chlorides

• Consequences:

- reduction of steel cross-section area
- damage of concrete cover
- decrease of ductility of steel (pitting effect)
- degradation of bond resistance (spalling)

• Reliable 3D numerical model useful for:

- prediction of durability of RC structures (new & existing)
- formulation of simple engineering models & design rules
- effect of accelerated corrosion

Processes to be modeled

- Non-mechanical processes to compute corrosion rate: Before depassivation of reinforcement:
 - Transport of capillary water (hysteretic behavior: wetting-drying)
 - Transport of heat
 - Transport of oxygen and chloride through the concrete cover
 - Immobilization of chloride in concrete
 - Transport of OH⁻ ions through electrolyte in concrete pores
 - Cathodic and anodic polarization
 - After depassivation (active corrosion phase):
 - Transport of capillary water (hysteretic behavior)
 - Transport of oxygen
 - Transport of rust
 - Creep of concrete
- Mechanical processes:
 - Damage and cracking of concrete
- Interaction between mechanical and non-mechanical processes in both directions

IWB

Theoretical framework

- Continuum mechanics
 - Green-Lagrange strain tensor
 - Co-rotational stress tensor
- Irreversible thermodynamics
- Mechanical model microplane model for concrete based on the relaxed kinematic approach
- Discretization method standard finite elements
- Smeared crack concept with crack band method as a localization limiter

Modelling processes after depassivation: active corrosion phase

- Hysteretic moisture behavior of concrete

$$\rho_{w} \frac{\partial \theta_{w}(h)}{\partial h} \frac{\partial h}{\partial t} = \nabla \cdot (\delta_{v}(h) p_{v,sat} \nabla h)$$

- Transport of oxygen

$$\theta_{w} \frac{\partial C_{o}}{\partial t} = D_{w}(\theta_{w}) \nabla \theta_{w} \nabla C_{o} + \nabla \cdot \left[\theta_{w} D_{o}(\theta_{w}) \nabla C_{o}\right]$$

Modelling processes after depassivation: active corrosion phase

- Oxygen consumption

$$D_{o}(S_{w}, p_{c})\frac{\partial C_{o}}{\partial n}\Big|_{cathode} = -k_{c}i_{c} D_{o}(S_{w}, p_{c})\frac{\partial C_{o}}{\partial n}\Big|_{anode} = -k_{a}i_{a}$$

- Butler-Volmer kinetics

$$i_{c} = i_{0c} \frac{C_{o}}{C_{ob}} e^{2.3(\Phi_{0c} - \Phi)/\beta_{c}} \qquad i_{a} = i_{0a} e^{2.3(\Phi - \Phi_{0a})/\beta_{a}}$$

- Electric current through electrolyte

 $\boldsymbol{i} = -\boldsymbol{\sigma}(S_w, p_c) \nabla \boldsymbol{\Phi}$

- Electrical charge conservation $\nabla^2 \Phi = 0$

 H_2O O_2

 H_2O O_2

 (H_2O) O_2

Modelling processes after depassivation: active corrosion phase

- Rate of rust production

 $J_r = i_r i_a$ $m_r = J_r \Delta t A_r$

- Rust transport through pores and cracks

$$\theta_{w} \frac{\partial R}{\partial t} = \nabla \cdot \left[\theta_{w} D_{r}(\theta_{w}) \nabla R \right] + D_{w}(\theta_{w}) \nabla \theta_{w} \nabla R$$

- Inelastic radial expansion due to corrosion

$$\Delta l_r = \frac{m_r}{A_r} \left(\frac{1}{\rho_r} - \frac{r}{\rho_s} \right)$$

- Mechanical response

$$\nabla \left[D_m(u, \theta_w, T) \nabla u \right] + \rho b = 0$$

Accelerated corrosion tests on concrete cylinders

Performed tests on approximately 400 concrete cylinders

- Cylinder diameter 50 100 mm
- Reinforcement ϕ 8 to 16 mm
- Different loading scenaria
- Concrete: $f_c = 40$ MPa, w/c= 0.70

Aims:

- Calibration of the numerical model
- Study the effect of accelerated corrosion on corrosion induced damage

Accelerated corrosion tests: Test-setup

2.5 9

Accelerated corrosion test				
Imposed potential 100 mV	Imposed potential 500 mV	Geometry		
Specimen	Specimen	Specimen diameter	Reinf. Bar diameter	Ratio
(-)	(-)	(mm)	(mm)	(cover/dia meter)
A (50/Φ8)	D (50/Ф8)			
B (50/Ф8)	E (50/Ф8)	50	8	2.63
C (50/Ф8)	F (50/Ф8)			

University of Stuttgart Institute of Construction Materials

Accelerated corrosion test results (splash conditions, cylinder 50/Φ8)

Imposed potential 100 mV, first crack after 20 days

Imposed potential 500 mV, first crack after 6 days

University of Stuttgart

Accelerated corrosion – numerical simulation

Institute of Construction Materials

Analysis vs. Experiment (after calibration)

first crack after: 4 days vs. 6 days

first crack after: 17 days vs. 20 days

Institute of Construction Materials

Distribution of humidity

Conductivity of concrete

Conductivity of concrete depends on :

- Type of cement & additives
- Water/cement ratio
- Relative humidity, water content
- Chemical composition of pore water

Measured only for saturation of 90% !

Result of the parametric study			
Electrical conductivity of concrete (w/c=0.7) [10 ⁻³ Ω ⁻¹ m ⁻¹]			
Saturation[%]	$\sigma_{natural, splash}$	$\sigma_{accelerated}$	
50	2.75	8.75	
55	3.00	9.54	
60	4.28	13.61	
65	8.70	27.67	
70	9.52	30.27	
75	10.50	33.39	
80	11.50	36.57	
85	12.50	39.75	
90	13.50	42.93	

 $i = -\sigma(S_w, p_c) \nabla \Phi$

Expansion of corrosion products

Corrosion products

Expansion of corrosion products

$\alpha_r = \frac{\rho_s}{\rho_r} = 4.0$	Natural corrosion [Ferric hydroxide Fe(OH) ₃]	$J_r = 5.536 \times 10^{-7} i_a$	$\Delta l_r = \frac{m_r}{A_r} \left(\frac{1}{\rho_r} - \frac{0.523}{\rho_s} \right)$
$\alpha_r = \frac{\rho_s}{\rho_r} = 1.9$	Accelerated corrosion [Lepidocrocite, Goethit α-FeOOH, γ-FeOOH]	$J_r = 4.607 \times 10^{-7} i_a$	$\Delta l_r = \frac{m_r}{A_r} \left(\frac{1}{\rho_r} - \frac{0.623}{\rho_s} \right)$

University of Stuttgart Institute of Construction Materials

"Transport" of rust

Initial rust diffusion coefficient				
	Natural	100 mV	500 mV	
Rust diffusion coefficient D_R (m ² /s)	2.2x10 ⁻¹⁶	3.2.x10 ⁻¹⁵	9.5x10 ⁻¹⁵	

University of Stuttgart Institute of Construction Materials

Natural corrosion (splash conditions)

Model parameters				
Faraday's constant, F (C/mol)	96486.7			
Anodic exchange current density, i _{0a} (A/m ²)	1.875×10 ⁻⁴			
Cathodic exchange current density, i_{0c} (A/m ²)	6.25×10 ⁻⁶			
Anodic equilibrium potential, Φ_{0a} (V vs. SCE)	-0.780			
Cathodic equilibrium potential, $\Phi_{\text{\tiny OC}}$ (V vs. SCE)	0.160			
Tafel slope for anodic reaction, $\beta_a\left(V\right)$	0.06			
Tafel slope for cathodic reaction, $\beta_c\left(V\right)$	0.160			
Difusion coeff. for transport of rust (m ² /s)	2.2x10 ⁻¹⁶			

Summary and conclusions

- The coupled 3D CHTM model is able to replicate accelerated corrosion of reinforcement in concrete.
- Computed current density and related time of cracking and crack patterns are similar to the experimentally observed ones.
- The transport of rust through cracks in concrete plays important role in corrosion induced damage of concrete.
- In case of accelerated corrosion different types of products are produced with expansion factor lower of that observed in case of natural corrosion (red rust).
- For the present geometry and environmental conditions accelerated corrosion with imposed electric potential up to 500 mV yields to results that are comparable with the results obtained assuming natural conditions.