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Introduction & motivation

e Corrosion of reinforcement significantly influence durability of
reinforced concrete (RC) structures

e Reason for corrosion: electro-chemical reaction of steel due
to carbonation of concrete or due to influence of chlorides

e (Consequences:

— reduction of steel cross-section area

— damage of concrete cover

— decrease of ductility of steel (pitting effect)
— degradation of bond resistance (spalling)

e Reliable 3D numerical model useful for:

— prediction of durability of RC structures (new & existing)
— formulation of simple engineering models & design rules
— effect of accelerated corrosion
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Processes to be modeled

- Non-mechanical processes to compute corrosion rate:
Before depassivation of reinforcement:

Transport of capillary water (hysteretic behavior: wetting-drying)
Transport of heat

Transport of oxygen and chloride through the concrete cover
Immobilization of chloride in concrete

Transport of OH" ions through electrolyte in concrete pores
Cathodic and anodic polarization

After depassivation (active corrosion phase):

Transport of capillary water (hysteretic behavior)
Transport of oxygen

Transport of rust

Creep of concrete

* Mechanical processes:
— Damage and cracking of concrete

« Interaction between mechanical and non-mechanical
processes in both directions
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Theoretical framework

« Continuum mechanics
- Green-Lagrange strain tensor
- Co-rotational stress tensor

- Irreversible thermodynamics

- Mechanical model - microplane model for concrete based on
the relaxed kinematic approach

- Discretization method - standard finite elements

- Smeared crack concept with crack band method as a
localization limiter

gt University of Stuttgart 5
:3::’.{.’5' Institute of Construction Materials




P ——

Modelling processes after depassivation:
active corrosion phase
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Modelling processes after depassivation:
active corrosion phase

Oxygen consumption

Dy(S. P) 2| =k, D,(S,.p.)

an cathode

Butler-Volmer kinetics
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Electric current through electrolyte
I =-0(S,, p)UP

Electrical charge conservation
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odelling processes after depassivation:
active corrosion phase

Rate of rust production
J =ii,  m =JAtA

Rust transport through pores and cracks
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Inelastic radial expansion due to corrosion
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Mechanical response -
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Accelerated corrosion tests on concrete cylinders

Performed tests on approximately 400 concrete cylinders

= Cylinder diameter 50 - 100 mm

= Reinforcement @ 8 to 16 mm

= Different loading scenaria

= Concrete: f.= 40 MPa, w/c= 0.70

Aims:

= Calibration of the numerical model
= Study the effect of accelerated corrosion
on corrosion induced damage
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Plastiline insulation

Titanium mesh

Plastic supports

Accelerated corrosion tests: Test-setup
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Accelerated corrosion test

Plastic support net

Conductive foam

Imposed Imposed

potential potential Geometry
100 mV 500 mV

Specimen Specimen Specimen  Reinf. Bar
P P diameter diameter

Q) Q) (mm) (mm)

A (50/08) D (50/®8)

B (50/®8) E (50/®8) 50 8

C (50/98) F (50/8)
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Accelerated corrosion test results
(splash conditions, cylinder 50/®8)

Imposed potential 100 mV, first crack after 20 days

Acc. corrosion (100mV)
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—=e&— Specimen C

0.6 1

0.4 417

Current density [A/m?]

I ] 1 L] 1
400 500 600 700 800

Time [h]

I I |
0 100 200 300

: University of Stuttgart
# Institute of Construction Materials

Current density [A/m?]

Imposed potential 500 mV, first crack after 6 days

Acc. corrosion (500mV)
—#— Specimen D
3.2 - —+&— Specimen E
—+#—— Specimen F
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Accelerated corrosion — numerical simulation

Epoxy coating

AN cylinder 50/08

mm

Concrete

Mechanical properties:

E.= 31.60 GPa

f= 3.10 MPa
f= 40.0MPa
Ge= 55 J/im?
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Numerical analysis
(laboratory conditions)
Wetting - Drying regime
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Relative humidity [%]
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Hysteretic moisture model for concrete

Sorption isotherms for
Water vapour permeability [9]
Surface transfer humidity coeff. [m/g]

w/c=0.65
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Analysis vs. Experiment (after calibration)

first crack after:

17 days vs. 20 days

first crack after: 4 days vs. 6 days

Current density [A/m?]

Acc. corrosion (100mV)
---------- Specimen A
---------- Specimen B
---------- Specimen C
FE analysis
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Distribution of humidity

Monitoring profile

Humidity distribution
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Conductivity of concrete

Conductivity of concrete depends on :

Electrical conductivity of concrete (w/c=0.7)

- Type of cement &_ additives (1030-1m-]

- Water/cement ratio _

- Relative humidity, water content Saturation[%]  Onawral, spiash ~ Taccelerated

- Chemical composition of pore water 50 2.75 8.75
55 3.00 9.54
60 4.28 13.61

Measured only for saturation of 90% ! 65 8.70 21.67
70 9.52 30.27
75 10.50 33.39
80 11.50 36.57
85 12.50 39.75
90 13.50 42.93

| =-0(S,, p.)U®
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Expansion of corrosion products

Corrosion products

Hydrated ferric hydroxide [Fe(OH),, 3H,0]

Ferrichydroxide [Fe(OH).]

latural corrosion

Akaganite [B-FeOOH]
Lepid ite [y-FeOOH . .

epidocrocite [y-FeOOH] Accelerated corrosion (Fischer, 2012)
Goethite [a-FeOOH]

Hematite [Fe,0;]

Magnetite [Fe;0,]

Iron Oxide [FeO]

2 3 4

Volume expansion factor (-)

Expansion of corrosion products

Natural corrosion J =5536x107 Al :ﬂ 1 _%
[Ferric hydroxide Fe(OH),] ' 8 A\lp P
Accelerated corrosion
[Lepidocrocite, Goethit J, =4.607x1 '7ia Al -m 1 —%
a-FeOOH, y-FeOOH] Alp L,
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sIransport" of rust

Initial rust diffusion coefficient
Natural 100 mV 500 mV
Rust diffusion coefficient Dg (m?/s) 2.2x1016 3.2.x1015 9.5x101°
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Natural corrosion (splash conditions)

125 -
Numerical analysis
(natural conditions)
— Wetting - Drying regime
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Model parameters

Faraday's constant, F (C/mol) 96486.7
Anodic exchange current density, iy, (A/m?) 1.875x10+
Cathodic exchange current density, iy, (A/m?) 6.25x106
Anodic equilibrium potential, @, (V vs. SCE) -0.780
Cathodic equilibrium potential, ®. (V vs. SCE) 0.160
Tafel slope for anodic reaction, 3, (V) 0.06
Tafel slope for cathodic reaction, B, (V) 0.160
Difusion coeff. for transport of rust (m2/s) 2.2x1016
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Summary and conclusions

The coupled 3D CHTM model is able to replicate accelerated corrosion
of reinforcement in concrete.

Computed current density and related time of cracking and crack
patterns are similar to the experimentally observed ones.

The transport of rust through cracks in concrete plays important role
in corrosion induced damage of concrete.

In case of accelerated corrosion different types of products are
produced with expansion factor lower of that observed in case of
natural corrosion (red rust).

For the present geometry and environmental conditions accelerated
corrosion with imposed electric potential up to 500 mV yields to
results that are comparable with the results obtained assuming
natural conditions.
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